
Android SmartTVs Vulnerability
Discovery via Log-Guided Fuzzing

Yousra Aafer, Wei You*, Yi Sun, Yu Shi, Xiangyu Zhang, Heng Yin

Usenix Security 2021

Why is SmartTV Security Important? A Few Reasons

Account for the largest market share of Home IoT devices

Expected to achieve a market value of 253 billion USD by 2023

Smart TVs

Plethora of attack vectors:

Physical channels: e.g., sending crafted broadcast signals

Malware: SmartTV users can download SmartTV-specific Apps

Broad Spectrum of Attack Consequences: Cyber + Physical

Goal

• Perform a systematic security evaluation of Android SmartTVs.

• Focus on customization aspects, performed to tailor the original OS for the SmartTV
functionalities.

Background

Android SmartTVs run a heavily customized version of AOSP:

• Additional hardware, system components.

• Custom Functionalities are exposed to system and app developers through dedicated APIs.

• The number of custom APIs is high (up to 101 in H96Pro).

SmartTV APIs can open the door to various damages if not

properly protected.

These APIs execute in the context of highly privileged

processes.

Motivating Example

• Xiaomi MiBox3 introduces a new native API SystemControl. setPosition(x, y, w, h)

SystemControl. setPosition(x, y, w, h)

Motivating Example

• Xiaomi MiBox3 introduces a new native API SystemControl. setPosition(x, y, w, h)
• The API does not enforce any access control and has persistent impact across reboot.
• With the SmartTV ransomware on the rise, such APIs can be exploited to mount DoS attacks.

SystemControl. setPosition(x, y, w, h)SystemControl. setPosition(1000, 1000, 1000, 1000)

Detecting SmartTV Vulnerabilities

• We develop a specialized analysis framework to uncover hidden flaws, caused by
unprotected APIs.

• Why can’t we directly adopt static analysis tools?

• Additions are implemented in C++ and / or Java

• Why can’t we directly adopt existing testing approaches?

• Assessing execution feedback is challenging

The Audio / Visual behavior is decoupled from the internal states → the system might be functioning

correctly when the display / sound is messed up.

Fuzzing Target

Locator

Input Generator

Dynamic Fuzzer Monitoring System

• Java APIs

• Native APIs

SmartTV fuzzing targets

Our Approach: Fuzz-testing

Input

Specs
Execution

Log

HDMI Capture

Fuzzing Target locator

• We recover native API interfaces at the low-level Binder IPC through binary analysis.

• Recovering Native APIs Interfaces: Binder transaction ids, arguments types and order.

AIDLAIDL

Extracting Native Function Interfaces

10

symbol reserved

symbol absent

Step:
1. Identify function bodies within the binder proxies
2. Extract traction id and parameter types

(inferred through the proxy’s marshaling methods)
3. Confirm the result by analyzing the binder stubs.

Fuzzing Target

Locator

Input Generator

Dynamic Fuzzer Monitoring System

• Java APIs

• Native APIs

SmartTV fuzzing targets

Our Approach: Fuzz-testing

HDMI Capture

Execution

Log

Input

Specs
X=15

Y=10

• Challenges to address:

1. Recognizing target logs

2. Recognizing input validations

Recognizing Target Logs

12Log Excerpts before and after calling the (native) target API ImagePlayer.XYZ()

Recognizing Input Validations

• Feasibility of learning from log messages in Java to classify log messages
from native

• Need of sophisticated NLP techniques as keyword lookup is insufficient.

13

Java

Native

Deep Learning for Message Classification

Input Validation

Input Validation

Non-Input Validation

Input Validation Classification

15

Log-Guided Fuzzing
Example: fuzzing ABC(int, int, float)

Execution

Log

Fuzzing Target

Locator

Input Generator

Dynamic Fuzzer Monitoring System

• Java APIs

• Native APIs

SmartTV fuzzing targets

Monitoring System

HDMI Capture

Input

Specs

Evaluation

• 11 Android TVBoxes evaluated
• including Nvidia Shield, MIBOX 3, etc.
• each analyzed device contained 1 to 9 vulnerabilities

• 37 flaws discovered
• 11 high-impact cyber threats
• 10 new memory corruptions
• 16 visual/auditory anomalies

• confirmed and fixed by the vendors

18

Evaluation
Cyber threats and Memory Corruptions

Evaluation
Physical Vulnerabilities

Related Work

• IOT-Fuzzer: Discovering Memory Corruptions in IOT through App-
Based Fuzzing. In Proceedings of NDSS 2018.

• FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation. In Proceedings of Usenix Security
2019.

21

Conclusion

• New technique
• integrate static analysis and log-guided dynamic fuzzing

• automatically detect cyber and physical anomalies

• provide a solution when instrumentation and execution feedback is not feasible

• New findings
• reveal security-critical threats of Android SmartTV API additions

• cyber threats, memory corruptions and physical anomalies

22

Thank you!

Q & A

Contact:
youwei@ruc.edu.cn

mailto:youwei@ruc.edu.cn

