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Device Identification: Why?



OWL: Overhearing on WiFi for Device Identification

When a mobile/IoT device connects to a 
WiFi network, we want to know that it is. 

To identify the manufacturer, type, model
of mobile devices using public information.

Task 1: Device Identification



OWL: Overhearing on WiFi for Device Identification

When a malicious device connects to a WiFi
network, we want an alert. 

To detect the abnormal devices, whose 
BC/MC traffic deviates from benign patterns.

Task 2: Malicious Device Detection



OWL: Overhearing on WiFi for Device Identification

When a device is connected to a wireless 
network, it sends out broadcast or multicast 
packets: DHCP, mDNS, SSDP, etc

Use these packets to fingerprint devices. 

Core Idea: Use Features from 
Broadcast/Multicast Packets



Device Identification: Data Collection

Public WiFi with 
Captive Portals

Encrypted WiFiOpen Public WiFi



Device Identification: Data Collection

7 Countries: US, Norway, Sweden, Portugal, China, Japan, Korea

Collected Broadcast/Multicast traffic from 176 WiFi Networks, 12 
networks disabled BC/MC traffic

Locations: coffee shops, restaurants, retail stores, airports, hotels, 
corporate guest networks, universities, authors’ own homes

BC/MC packets from 31,850 unique devices



Device Identification: Data Collection

We collected data through a completely passive approach.

We did not turn on promiscuous mode: we were the legitimate and 
intended receivers of these BC/MC packets. NO unicast traffic. 

No violation of Terms and Conditions to our best knowledge. 

Discussed with two  Institutional Review Boards.

Post-processing to remove any potential personal identifier.



Device Identification: Data Collection

275 different BC/MC protocols were identified in our data

69% of the devices use more than two protocols

51.9% of the devices use mDNS. Several other application-layer 
protocols are also widely used. 

Popularity of protocols appear to be relatively consistent across 
countries, with a few small exceptions

Some (proprietary) protocols were only discovered from one 
manufacturer/type/model of devices, e.g., KINK in Samsung TVs 



Device Identification: Data Collection

The ground truth dataset
• The identity of each device is physically verified
• 423 devices with {manufacturer, type, model} labels
• E.g., {D-link, camera, dcs-930lb}

The annotated dataset
• Labeled by annotators based on human-readable content
• 4064 devices with {manufacturer, type, model} labels
• 6519 devices with {manufacturer, type} labels
• 15895 devices with only {manufacturer} label

The sanitized dataset
• Removed all human interpretable textual features from 

the annotated dataset. 
• MAC prefixes are also removed.



Device Identification: Feature Extraction

Identifiers. MAC prefix, HostName in DHCP, etc.
✓ Informative, unique 
× not always available, may be tampered

Main Features. Key-value pairs, pseudo natural language features
× Not unique identifiers
✓ Robust, available, provide good discriminatory power

Auxiliary Features. SSDP notify → URL→ device description file
✓ Include identifiers (device names)
× Need to actively retrieve the file, not always available
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Device Identification: Feature Extraction

Identifiers. MAC prefix, HostName in DHCP, etc.
✓ Informative, unique 
× not always available, may be tampered

Main Features. Key-value pairs, pseudo natural language features
× Not unique identifiers
✓ Robust, available, provide good discriminatory power

Auxiliary Features. SSDP notify → URL→ device description file
✓ Include identifiers (device names)
× Need to actively retrieve the file, only used in evaluation



Device Identification: Feature Extraction

Features from different 
protocols complement 
each other

Each protocol generates 
an independent set of 
features

Not all protocols are 
available in all devices

Multi-view Classification



Device Identification: Multi-view Wide and Deep Learning

The deep component: early fusion; maximize the generalization performance 

The wide component: late fusion; improve the memorization of label-view interaction



Device Identification: Multi-view Wide and Deep Learning

• ℒ𝑑𝑒𝑒𝑝: best classification performance for device 
labels under input features

• ℒ𝑤𝑖𝑑𝑒: to optimize classification performance on 
each view

• ℒ+: view consistency: to maximize view 
agreement for benign samples

• ℒ+: to maximize the view inconsistency for 
malicious devices
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Device Identification: Multi-view Wide and Deep Learning

• ℒ𝑑𝑒𝑒𝑝: best classification performance for device 
labels under input features

• ℒ𝑤𝑖𝑑𝑒: to optimize classification performance on 
each view

• ℒ+: view consistency: to maximize view 
agreement for benign samples

• ℒ−: to maximize the view inconsistency for 
known malicious devices



Device Identification: Experiments

Coverage: the fraction of all devices that OWL 
could generate a label for.

Accuracy: the fraction of labeled devices that are 
correctly labeled

Overall Identification Rate: the faction of all 
devices that are correctly labeled.



Device Identification: Experiments

[ARE] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Acquisitional rule-based engine for discovering internet-of-things 
devices. In USENIX Security, 2018.
[WDMTI] Lingjing Yu, Tao Liu, Zhaoyu Zhou, Yujia Zhu, Qingyun Liu, and Jianlong Tan. WDMTI: Wireless Device Manufacturer 
and Type Identification using Hierarchical Dirichlet Process. In IEEE MASS, 2018.

Performance on Ground truth Data
• OWL provides the best overall performance 

(OIR) at all granularity levels. 
• OWL’s coverage is consistently the highest. 
• At finer granularity, OWL significantly 

outperforms both ARE and WDMTI in OIR. 
• ARE has the best accuracy but limited 

coverage, especially at fine granularity 
levels. 

• WDMTI’s coverage is always limited.



Device Identification: Experiments

Performance on Annotated Data
• Again, OWL provides the best overall 

performance (OIR) at all granularity levels.
• Accuracy (A*) and OIR (OIR*) was only 

evaluated on partial data in {M, T} and {M, 
T, M} categories.

• A* and OIR* represent the upper-bound of 
the actual A and OIR.

• OIR* in the range of [0.95, 0.98]

[ARE] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Acquisitional rule-based engine for discovering internet-of-things 
devices. In USENIX Security, 2018.
[WDMTI] Lingjing Yu, Tao Liu, Zhaoyu Zhou, Yujia Zhu, Qingyun Liu, and Jianlong Tan. WDMTI: Wireless Device Manufacturer 
and Type Identification using Hierarchical Dirichlet Process. In IEEE MASS, 2018.



Device Identification: Experiments

Performance on Sanitized Data
• All human-interpretable contents are 

removed from annotated dataset.
• This is to evaluate OWL’s performance in 

extreme conditions.
• A and OIR represent the lower-bound of 

the actual A and OIR.
• OWL’s OIR is still high, in the range of [0.75, 

0.88].



Device Identification: Experiments

Detection Speed
• When all the features are available, It only 

takes mini-seconds for a trained MvWDL
model to classify a new device

• However, packets/features come to OWL 
slowly in real world settings.

• OWL was connected to the network at t0, 
and started to see packets on the network.

• OIR increased rapidly for approximately 
240 seconds, when OIR reached 80%.

• OIR peaked in about 500 seconds.



Malicious Device Detection: Approach

• ℒ𝑑𝑒𝑒𝑝: best classification performance for device 
labels under input features

• ℒ𝑤𝑖𝑑𝑒: to memorize the interactions among 
features, views and labels

• ℒ+: view consistency: to maximize view 
agreement for benign samples

• ℒ−: to maximize the view inconsistency for 
known malicious devices



Malicious Device Detection: Case Study

Spoofed Apple TV (31 devices)
• mDNS view: AppleTV, high confidence
• Other views: not AppleTV, high confidence 
• Labels: not AppleTV, some in ground truth dataset
• AirPlay: Apple’s proprietary protocol suite for 

multimedia streaming over WiFi
• mDNS packets of these devices were similar to 

AppleTV, so that others may AirPlay on them
• They were all connected to a corporation named 

Lebo (or HappyCast)

mDNS view other views



Malicious Device Detection: Case Study

Fake DHCP Server and Gateway (1 device)
• DHCP view: router, high confidence
• Other views (mDNS, SSDP): Microsoft Surface
• The device sent DHCP Offer and DHCP ACK 

messages to inform other devices the gateway of 
the network is itself.

• MAC prefix: Microsoft
• Explanation: Microsoft surface book spoofed a 

gateway to lure others to connect through it.
• Some devices were tricked (DHCP request)
• Simulated this attack in the lab

DHCP view other views



Malicious Device Detection: Case Study

(Hidden) Camera Detection
• Hidden cameras are often considered as sensitive 

or malicious devices that infringe users’ privacy.
• Existing solutions: traffic analysis
• Cannot detect cameras that are not actively 

transmitting (in stand-by)
• Attackers and record/store now and send later
• Cameras are still online, they send out BC/MC 

packets and they can be detected by OWL
• OWL achieved 100% accuracy in detecting 

cameras at {manufacturer, type} granularity



OWL: Overhearing on WiFi for Device Identification

OWL

MvWDL



第二研究室：信息智能处理研究室

面向网络空间安全，研究大规模网络智能信息处理的基本理论、模型、算法和关
键技术，研制可扩展、高可用、易使用的网络数据处理与分析系统。



针对网络技术迅猛发展给网络空间安全带来的挑战，研究分布式计算、高
性能网络数据获取、网络空间测绘的基本理论、架构、模型、算法，融合
SDN、BigData，AI等相关技术，研制高性能防火墙设备、网络空间测绘系统，
支持网络空间安全治理各类需求。

MESA团队：网络流处理与网络空间测绘



The InfoSec Group at KU

AI/ML/DS Security & Privacy

Contact: Bo Luo bluo@ku.edu

mailto:bluo@ku.edu


The InfoSec and KUPS Groups at KU

AI/ML/DS Security & Privacy

Contact: Bo Luo bluo@ku.edu
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Thanks

email:yulingjing@iie.ac.cn

Thanks for listening！Q&A


