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Device Identification: Why?

Device identification in
communication and
computing

Network measurement
Cyber situational awareness

Malicious device

Device management .
discovery




OWL: Overhearing on WiFi for Device Identification

€ =, Task 1: Device Identification
¢ 8

Y
Mol
Coletv ali-smartspeaker When a mobile/loT device connects to a

I I WiFi network, we want to know that it is.

- hp_printer_mfp-m227fdw Belkin-switch-wemo

80:2b:f900xx:XX 94:10:38:XX XXXX

e Tolinkrouterdwrzoon O light To identify the manufacturer, type, model
i L1 Sbelbel of mobile devices using public information.

Q Apple-computer-macbook @ . Sony-gameconsole-ps4

ac:be:32:xx:ixoexx e8:9e:b40CXXIXX
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OWL: Overhearing on WiFi for Device Identification

€ [ =, Task 2: Malicious Device Detection
.
¢ 8 - o 0
« sy 7

5 - 2l smartspeaker When a malicious device connects to a WiFi
D Samsung-phone-galaxy-s8 Q Hikvision-camera |

1 :14;?;[:;:1:::):(_mfp-m227fdw :::I::i:ixs:::)i(:ch-wemo n etWO rk’ We wa nt ana Ie rt |

80:2b:f900xx:XX 94:10:38:XX XXXX

o Dinkrouterthwrzoon Q) tght To detect the abnormal devices, whose

Fitbit-watch-versa Q Skybell-bell

1s00dbomoim Teabammers BC/MC traffic deviates from benign patterns.

Q Apple-computer-macbook @ . Sony-gameconsole-ps4
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00:72:bfxx:xX:XX "Hn 78:11:dCiXX:XX:XX
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D Samsung-phone-galaxy-s8
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80:2b:f900 XX XX

L3 -
Tplink-router-tl-wr700n
[ | )
Fitbit-watch-versa
18:00:db:xx:xx:xx

Apple-computer-macbook
aAC:bCi32:XXIXXIXX

Sony-camera-a6000

b0:72:bf XXX XX

ali-smartspeaker
10:9e:3a:00XXXX

Hikvision-camera A
18:68:chxx:xx:xx
Belkin-switch-wemo
94:10:3e:XX XXIXX

light

7c:49:ebixXIXX XX
Skybell-bell

7c:49:ebixxxXIXX

Sony-gameconsole-ps4
e8:9e:b4:xx: XXX

Xiaomi-humidifier
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Core Idea: Use Features from
Broadcast/Multicast Packets

When a device is connected to a wireless
network, it sends out broadcast or multicast
packets: DHCP, mDNS, SSDP, etc

Use these packets to fingerprint devices.




Device Identification: Data Collection

Public WiFi with

Open Public WiFi Captive Portals

Encrypted WiFi



Device Identification: Data Collection

7

7 Countries: US, Norway, Sweden, Portugal, China, Japan, Korea

\

rCoIIected Broadcast/Multicast traffic from 176 WiFi Networks, 12
| networks disabled BC/MC traffic

p
Locations: coffee shops, restaurants, retail stores, airports, hotels,
| corporate guest networks, universities, authors’ own homes

7

BC/MC packets from 31,850 unique devices

.

# of WiFi Networks

# of Devices

1855 2055 890

222227,

us

Norway Sweden Portugal China Japan



Device Identification: Data Collection

4 N

We collected data through a completely passive approach. e ®
: : % 60
We did not turn on promiscuous mode: we were the legitimate and B
_intended receivers of these BC/MC packets. NO unicast traffic. ) g @
* 0
No violation of Terms and Conditions to our best knowledge. 20000
. / g 15000
i . . . . pe ) 3 10000
Post-processing to remove any potential personal identifier. ;§ 5560
. J = 5000 1855 2055  ggo
0 | 222292 | 522555 |

4 N

Discussed with two Institutional Review Boards. U VDRSOl R SRl R

\ S




Device Identification: Data Collection

— 25000
e
o 19872
£ 20000 | —
, N a ; 16351
275 different BC/MC protocols were identified in our data 2 15000 12383
\ J [<Y+) , s
5 10000 8630102
r _ — 2 & | [ 54164987
51.9% of the devices use mDNS. Several other application-layer § 5000 T ] 265524012237
protocols are also widely used. S o [l
\ J/ ‘e o 2 e 2 0L = a9
* & o© %. £ & 2 € 3 2
4 N E g o o 2 - €
: 2 2
69% of the devices use more than two protocols A
\ y PROT=6 PROT>=7

p
Popularity of protocols appear to be relatively consistent across
kcountries, with a few small exceptions

,
Some (proprietary) protocols were only discovered from one
. manufacturer/type/model of devices, e.g., KINK in Samsung TVs

!N




Device Identification: Data Collection

 E.g., {D-link, camera, dcs-930Ib}

i () The ground truth dataset
= @ U U * The identity of each device is physically verified
g Q * 423 devices with {manufacturer, type, model} labels

The annotated dataset

* Labeled by annotators based on human-readable content
== Q . .
= * 4064 devices with {manufacturer, type, model} labels

v J * 6519 devices with {manufacturer, type} labels
15895 devices with only {manufacturer} label

Jy The sanitized dataset
= Q &v“ « Removed all human interpretable textual features from
%] \U/ N the annotated dataset.

MAC prefixes are also removed.




Device Identification: Feature Extraction

Table 3.2 Examples of data fields that may contain identifiers

Identifiers. MAC prefix, HostName in DHCP, etc. oriority Protocol Fiolds
v’ Informative, unique : B MAC prefix
x not always available, may be tampered X DHCP Option12 (HostName)
3 DHCP Option60 (VendorClass)
(. _ ) 4 DHCP Option77 (ModuleName)
Main Features. Key-value pairs, pseudo natural language features
. . .- 5 DHCPv6 Option39 (ClientFQDN)
x Not unique identifiers
. . . L. 6 MDNS answer names in response messages
v Robust, available, provide good discriminatory power
7 SSDP.MSEARCH user-agent
8 SSDP.MSEARCH X-AV-Client-Info
-
Auxiliary Features. SSDP notify = URL = device description file ’ LLMNR query name
v" Include identifiers (device names) 10 BROWSER query name
x Need to actively retrieve the file, not always available H NBNS query name
J 12 UDP device name




Device Identification: Feature Extraction

.

Option: (53) DHCP Message Type (Request)
v Option: (55) Parameter Request List
Length: 7
Parameter Request List Item:| (1) Subnet Mask

Parameter Request List Item:|(121)] Classless Static Route
Parameter Request List Item:| (3) Router

Identifiers. MAC pFEﬁX, HOStName in DHCP, etc. Parameter Request List Item: | (6) Domain Name Server

Parameter Request List Item:| (15) [Domain Name

List Item: | (119)] Domain Search

M H Parameter Request
/ Informatlve, Unlque Parameter Request List Item: | (252)] Private/Proxy autodiscovery

. » Option: (57) Maximum DHCP Message Size
» Option: (61) Client identifier
X nOt always avallablel may be tamperEd » Option: (50) Requested IP Address
» Option: (51) IP Address Lease Time
v Option: ((12)) ufmmliase.. key
Length: 6
Host Name: [iPhone ) @ /5|ue
» Option: (255) End

Main Features. Key-value pairs, pseudo natural language features

2c3lecd9cead@\ 344\ 271\ 220\ 3461222\ 255\ 3461212\ 225\345\ 261\ 217F8. _raop._tcp.local: type TXT, class IN, cache flush

x Not unique identifiers
v’ Robust, available, provide good discriminatory power e

.800 0000 0000 @001 = Class: IN {@x@001)—» RRckss
.‘JI._“rle tulive458@ = Cache flushT:rLTrue ——— cacheflush
::_'Fal-;:;ﬁ?:lzas f————— data length
Auxiliary Features. SSDP notify = URL = device description file o
v’ Include identifiers (device names) Lo L

x Need to actively retrieve the file, not always available v
m: L:::g:ihz:FF F7,0x1E
TXT: am=AppleTV3,1




Device Identification: Feature Extraction

4 )
Identifiers. MAC prefix, HostName in DHCP, etc.
v’ Informative, unique
x not always available, may be tampered
v <{root xmlns="urn:schemas-upnp-org:device-1-0"
script
v spcc\:ursion '
Main Features. Key-value pairs, pseudo natural language features ot
x Not unique identifiers v rveeng
v Robust, available, provide good discriminatory power ) s s

evicelype urn:schemas-upnp-org:device:MediaServer:1</deviceType
manufacturer>Microsoft Corporation</manufacturer
manufacturerlURL>http://www. microsoft. com</manufacturerURL

Auxiliary Features. SSDP notify - URL - device description file

v Include identifiers (device names)
x Need to actively retrieve the file, only used in evaluation




Device Identification: Feature Extraction

[
Each protocol generates

an independent set of

features
\_

~

J

[ = = = = = = = =

4 )
Features from different

protocols complement
each other

- J

Multi-view Classification

-

Not all protocols are
available in all devices

\_

J
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Device Identification: Multi-view Wide and Deep LearninT

N deep fusion
€ OO/
AN NN AN . i .
‘o) ) o M@M@'fﬁ”% N deep Device classification
-_— O —+ tt — ‘s’s’p“a’.’p{‘a’z’ W d S
e; (82" OO O —> (L deer fo~\ j
e AR . =
; < LN =
e3 ’_\ P1 . LWI e E-j )
e P, —| Fusion |4l wide — a
ey e 5 S
€3 3 J +
e I L L
. €5 . Pa | :
e e6 :;:+ Correlation ><>_’ i:'?f@; E?@: 6
N— \—’J Abnormal device detection
wide fusion

The deep component: early fusion; maximize the generalization performance

The wide component: late fusion; improve the memorization of label-view interaction




deep fusion

wide fusion

é ®
—\ ) —— v .\:,H\:,H\w. R e Device classification
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« [9eeP. pest classification performance for device
labels under input features

e LWie. g optimize classification performance on .

each view

~

L7T: view consistency: to maximize view
agreement for benign samples

L7T: to maximize the view inconsistency for
malicious devices




deep fusion

e Q.0 Q
\ACA NN AL/ . e e
( \ . Fusion }\»{@}{%’}%{P”M R . Device classification
) —+ —p NN - f
e (g™ Vo) iieyiiey —>( L e [0
RSN 3
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a— _I Lm h Hma)umuws e view i Joncy for
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e Ir L L
o . - e Gk &
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N— \—’J Abnormal device detection
wide fusion

« [9eeP. pest classification performance for device
labels under input features

e LWie. g optimize classification performance on
each view

« L*:view consistency: to maximize view
agreement for benign samples

e L*:to maximize the view inconsistency for
malicious devices

~




A Fusion
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Device classification
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wide fusion

Abnormal device detection

L4eeP. hest classification performance for device

labels under input features

LWi4e. to optimize classification performance on

each view

« L*:view consistency: to maximize view

agreement for benign samples

e L7:to maximize the view inconsistency for

known malicious devices




Device Identification: Experiments

r \
Coverage: the fraction of all devices that OWL C = |{labeled devices}}/|{all devices}|
could generate a label for.
\ y
r . \
Accuracy: the fraction of labeled devices that are * = |{correctly labeled devices}|
correctly labeled | {labeled devices} |
y
_ \
Overall Identification Rate: the faction of all _ |{correctly labeled devices} | _
: OIR = : =CxA
devices that are correctly labeled. |{all devices}|




Device Identification: Experiments

/Performance on Ground truth Data \

100 -
‘ Z - % A B * OWL provides the best overall performance
- § % § : $f g? '§ (OIR) at all granularity levels.
- § % § ? g Eg : * OWLs coverage is consistently the highest.
§ ;% § 5 % B * At finer granularity, OWL significantly
40 § ¢ % ?2 ; é;, 7 outperforms both ARE and WDMTI in OIR.
§ % § 4 § %5 N * ARE has the best accuracy but limited
20 § % § - % g / § é coverage, especially at fine granularity
\ INVNUNAN F level
o NEENFEINVINFENENHENKN E cve's.
c { A lor!| ¢ { A lor!| ¢ « WDMTI’s coverage is always limited.

/

{manufacturer} {manufacturer, type} {manuf., tp., model}

[ARE] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Acquisitional rule-based engine for discovering internet-of-things
devices. In USENIX Security, 2018.

[WDMTI] Lingjing Yu, Tao Liu, Zhaoyu Zhou, Yujia Zhu, Qingyun Liu, and Jianlong Tan. WDMTI: Wireless Device Manufacturer
and Type Identification using Hierarchical Dirichlet Process. In IEEE MASS, 2018.




Device Identification: Experiments

100w " NARE OWDMTI @OwWL /Performance on Annotated Data \
§ INVIN \ 7 ‘ * Again, OWL provides the best overall
80 § § . § gg § ;, performance (OIR) at all granularity levels.
§ : § § | g § g * Accuracy (A*) and OIR (OIR*) was only
*0 § § . § | ?f § é evaluated on partial data in {M, T} and {M,
§ : § 2 § ? § g T, M} categories.
= § § 4 § | ? % % « A* and OIR* represent the upper-bound of
20 § 5 § : § | g § g thefctuaIAand OIR.
; e : 2 e . .
] § ; § \ ; g § 7 gr . OIR* in the range of [0.95, 0.98]
C ‘ A C ‘ A* {om*J c | a* ‘ ‘ \ /
{manufacturer} {manufacturer, type} {manuf., tp., model}

[ARE] Xuan Feng, Qiang Li, Haining Wang, and Limin Sun. Acquisitional rule-based engine for discovering internet-of-things
devices. In USENIX Security, 2018.

[WDMTI] Lingjing Yu, Tao Liu, Zhaoyu Zhou, Yujia Zhu, Qingyun Liu, and Jianlong Tan. WDMTI: Wireless Device Manufacturer
and Type Identification using Hierarchical Dirichlet Process. In IEEE MASS, 2018.




Device Identification: Experiments

- OWL ..
100 . /Performance on Sanitized Data \
oA

e All human-interpretable contents are
80 removed from annotated dataset.
* This is to evaluate OWL's performance in
60 extreme conditions.
o * Aand OIR represent the lower-bound of
the actual A and OIR.
20 * OWLs OIR is still high, in the range of [0.75,
j 0.88].

0 (2 227 224
C|A|OR|/ c| A|lOR| C| A |OR \ /
{manuf., tp.}

{manuf.} {m., tp., mo.}



Device Identification: Experiments

100
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Overall Identification Rate (OIR)

o

-— = == =
- -

- — manufacturer

------- manufacturer, type
—— manufacturer, type, model

0O 60 120 180 240 300 360 420 480 540 600
time (s)

/Detection Speed

 When all the features are available, It only
takes mini-seconds for a trained MvWDL
model to classify a new device

* However, packets/features come to OWL
slowly in real world settings.

* OWL was connected to the network at t,,
and started to see packets on the network.

* OIR increased rapidly for approximately
240 seconds, when OIR reached 80%.

k OIR peaked in about 500 seconds. /




deep fusion

Fusion
e; —_— O —+ att) —

Device classification
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Abnormal device detection

L4eeP. hest classification performance for device

labels under input features

L€ to memorize the interactions among

features, views and labels

« L*:view consistency: to maximize view

agreement for benign samples

e L7:to maximize the view inconsistency for

known malicious devices
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Malicious Device Detection: Case Study

mDNS view: AppleTV, high confidence

* Other views: not AppleTV, high confidence

e Labels: not AppleTV, some in ground truth dataset

* AirPlay: Apple’s proprietary protocol suite for
multimedia streaming over WiFi

 mDNS packets of these devices were similar to
AppleTV, so that others may AirPlay on them

* They were all connected to a corporation named

k Lebo (or HappyCast) /

[ MDNS view J [ other views J /poofed Apple TV (31 devices) \

Xiaomi, TV 4 Leshi, TV.x55 Leshi. TV.x635s

7 L &3 s o isense TCL
Gaoshengda, TV Funshion, TV Chuangwei, TV Tl by 4 = Tl Bt H c
Hisense, TV,vidaa PPTV.TV Changhong,TV,43s1 (KON e JnGO =il Yo Holer

whaley, TV,w50; MTN,TV Changhong, TV,LEDS50

: ! : lenovo PR} LTEd% YOUKU i H 'KV CHANGHONG 4T
Rlink, TV Nebula, TV Tianmao,Magiccast,m18




Malicious Device Detection: Case Study

[ DHCP view ] [ other views ] ﬁ\ke DHCP Server and Gateway (1 device) \
* DHCP view: router, high confidence
* Other views (mDNS, SSDP): Microsoft Surface
@ @ * The device sent DHCP Offer and DHCP ACK

messages to inform other devices the gateway of
the network is itself.

*  MAC prefix: Microsoft

e Explanation: Microsoft surface book spoofed a
gateway to lure others to connect through it.

* Some devices were tricked (DHCP request)

k Simulated this attack in the lab /




Malicious Device Detection: Case Study

M

n-lidden) Camera Detection \

* Hidden cameras are often considered as sensitive
or malicious devices that infringe users’ privacy.

* Existing solutions: traffic analysis

e Cannot detect cameras that are not actively
transmitting (in stand-by)

e Attackers and record/store now and send later

* Cameras are still online, they send out BC/MC
packets and they can be detected by OWL

 OWL achieved 100% accuracy in detecting

\ cameras at {manufacturer, type} granularity /




OWL: Overhearing on WiFi for Device Identification

ali-smartspeaker
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Contact: Bo Luo bluo@ku.edu
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