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IThreat Model

* We consider a defense that protects a vulnerable application against
memory corruption attacks.

— Web servers, databases or browsers.

* The design of this defense is secure:

— Breaking memory isolation is a prerequisite for compromising the defense (e.g.,
attackers cannot hijack the control flow before it).

* Attackers’ capabilities:
— Arbitrary read and write by exploiting memory corruption vulnerabilities.
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I Motivation

* Problem:
— Hardware-assisted memory isolations could achieve better performance.
— But existing methods are not fast enough for isolating in the user-mode process.

{1

.’KY} The user-mode hardware features are not fast.

How about the privileged hardware ?

Is there a privileged hardware feature which is more
efficient than Intel MPX/MPK for the memory isolation 22?2
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* To prevent the kernel from inadvertently
accessing malicious data in user space,

— dereferencing a corrupted data pointer

* Intel and AMD provide the Supervisor-
mode Access Prevention (SMAP)
hardware feature to disable the kernel
access to the user space memory.

corrupted pointer
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SMAP



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.

* SMAP disallows the code access to the U-page in the supervisor-mode.
— S-mode is short for supervisor-mode (ring 0-2).
— U-mode is short for user mode (ring 3).



I Motivation SMAP in Processors 101

* Supervisor-mode Page (S-page) vs. User-mode Page (U-page)
— Divided by the U/S bit in the page table entry.

* SMAP disallows the code access to the U-page in the supervisor-mode.
— S-mode is short for supervisor-mode (ring 0-2).
— U-mode is short for user mode (ring 3).

________________|Ringo Ring1 Ring2 Ring3

Privileged Instruction Fetch &/ )4

X X
S-page Access Permission 4 7 4 x
v

U-page Access Permission < &
@) SMAP is disabled

0 !



I Motivation SMAP in Processors 101
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— Divided by the U/S bit in the page table entry.
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* The Memory Layout Setting
— The isolated memory region are set to be U-pages.
— Other memory regions are set to be S-pages.

* The Running State Setting

— The process runs in ring 0, due to the stac/clac are privileged instructions.

SMAP is enabled
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* Problem:
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* C-1: Distinguishing SMAP reads and writes.
— Sensitive data may require only integrity protection.
— Preventing reads from untrusted code can lead to unnecessary overhead.

* C-2: Preventing the leaking/manipulating of the privileged data structures.
— In general, a guest VM needs to manage the memory, interrupts, exceptions, etc.
— Some data structures are privileged, e.g., the page tables.

* (C-3: Preventing the abusing of the privileged hardware features.
— Besides the stac/clac, other privileged instructions can also run in ring o.
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The shared-memory based read/write separation method.
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* C-2: Preventing the leaking/manipulating of the privileged data structures.

e Observation:

— The operations to these structures are only performed when the process accesses
the OS kernel through specific events, e.g., interrupts, exceptions, and system calls.

L

e Solution: \QI

— Placing the privileged data structures and their operations into the VMX root mode.

— We leverage the Intel VT-x technique to force all these events to trigger VM exits
and enter into the VMX root mode.
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IApproaches Overview —— Challenge-3 =!

* (C-3: Preventing the abusing of the privileged hardware features.

* Solution: Pe?
J We identify all privileged instructions in the 64-Bit mode of X86 64. e@
J Also, identifying the instructions that will change the behaviors in different rings.

J SEIMI sanitizes the execution of these instructions in the VMX non-root mode by
using multiple techniques.



I Outline

Motivation
High-level Design

Approach Overview

ﬁ e SEIMI System




I System Overview

is implemented on Linux/X86 64 platform.

T

1N




I System Overview

is implemented on Linux/X86 64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase

%5

b4




I System Overview

is implemented on Linux/X86_64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase

Compilation phase

Users could use the SEIMI’s APIs to
management the isolated memory region.

%5

b4




I SEIMI Compilation Phase

provides APIs to allocate/free the isolated region, and enable/disable the SMAP.

API Description

void *sa_alloc(size_t length, Allocate an 1solated U-page region at
bool need_ro, the page granularity. If specified, it also
long *offset): allocates a shared isolated S-page region.

bool sa_free(void *addr, Free an isolated U-page region
size_L !'E.Hgﬁ.’]; with the specified length.
&

\\Swﬂ uw Q\  #define SWITCH_IN \ Disable SMAP—access the

asm("stac\n"): isolated U-page region is allowed.

#define SWITCH_OUT \ Enable SMAP—access to the

Compllatlon phase asm("clac\n"); isolated U-page region is denied.
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i
v
Compilation phase Runtime Phase
Users could use the SEIMI’s APIs to The core of SEIMI is a kernel module which monitors
management the isolated memory region. the startup of the target application and places it into

ring o of the VMX non-root mode.
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is implemented on Linux/X86_64 platform.
* Two Phases in —— Compilation Phase and Runtime Phase
Load & Run R Target Process Other Processes
HW(VMX non-root, Ring 0) HW(VMX root, Ring 3)
A A
User_ _ _ _ | .

Kernel
8 g <>‘|_ \ 4
?\\% Kernel Module !

= : OS Kernel

HW(VMX root, Ring 0)

Compilation phase

Users could use the SEIMI’s APIs to
management the isolated memory region.

Runtime Phase

The core of SEIMI is a kernel module which monitors

the startup of the target application and places it into
ring o of the VMX non-root mode.
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SEIMI Runtime Phase

* The core of is a kernel module, includes three key components.

J Memory Management Component

Target Process Other Processes
— Configures the regular/isolated memory region. HW(VMX nonToot, Ring 0) HW(VMX root, Ring 3)
A A
User_ | .
Kernel

Vv

N
J Privileged Instructions Prevention Component Q Kernel Module

— Prevents these instructions from being abused. 0S Kernel

HW(VMX root, Ring 0)

Runtime Phase
J Events Redirection Component

— Handles system calls, interrupts, exceptions, and Linux signals.
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I SEIMI Memory Management Component

* A shadow mechanism for (only) page-table root.
— The guest/host page-tables share the last three-level page;a\ble entries.
— Flipping the U/S bit to set the U-page and S-page neatly.

Page Page 4KB
PML4 PDPT Directory Table Page
#0 { >
#255 User-
#256 S Page [ L] [ [ [
Entries in PML4 | Size(TB) | Description Type

1G 2M aK #0 ~ #254 127.5 Regular Memory S-page

~——

#511| S

Copy & Sync #255, 0.5 Isolated Memory U-page

I_‘___I
* HO—#254 entries only | | I
change the U/S bit. ISuper|

I

. i A
#255 « #256—#511  entries | VIS0,

#0

#255 ~ #511 128.0 Kernel Space NULL

only change the P bit. : Page |
" [NULL | |
#511 L——
4KB Page
—|Guest CR3
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* Support the read-only isolated S-page memory region.
g
— Flipping the R/W bit to set the read-only permission neatly. .2

Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page

#0

#255 User-
#256 S Page

#511| S
512G 1G

#O S

#511 NULL
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* Support the read-only isolated S-page memory region.

— Flipping the R/W bit to set the read-only permission neatly. .=

Host CR3 Page Page 4KB

PML4 PDPT Directory Table Page
#0
255 User-
#256( S Page
s vicsin Pt St
B 1o #0 ~ #2573 7 Regular Memory  S-page
Set the Read-only Region
PMLA” * The R/W bit of the #254 #254 0.5 Isolated Memory  S-page
entry Is set to u.
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* Support the read-only isolated S-page memory region.

— Flipping the R/W bit to set the read-only permission neatly. .=
Host CR3 Page Page 4KB
PML4 PDPT Directory Table Page
#0
#255 User-
#256( S Page
s e PSS
B 1 #0 ~ #2573 7 Regular Memory  S-page
Set the Read-only Regi
PMLA’ +"The R/W bit of the #254 #254 0.5 Isolated Memory  S-page
entry is set to 0.
_____ I e R #255 0.5 Isolated Memory  U-page
#2541 S Shared #255 ~ #511 128 Kernel Space NULL
#255 “_ I\{I_?mory Set the Shared Memory
NULL * The #254 and the #255
#511 reference the same PDPT.
—|Guest CR3

User-Mode Entry Supervisor-Mode Entry
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ISEIMI Privileged Instruction Prevention Component

We identify all privileged instructions and the instructions that will change the
behaviors in different rings in the 64-Bit mode of X86 64.

e Quridentification method:

@) Automated filtering ¥) Manual Verification
— We embed each instruction with —  We manually review the description
random operands into a test program of all X86 instructions by reading the
and runitin ring 3. Intel Software Developers’ Manual.
— By capturing the #GP and the #UD, we — Confirm the first step is complete,
automatically and completely filter all and also find the instructions that
privileged instructions. behave differently in ring 0 and ring 3.
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* We group them into 20 categories based on their different functionality.
Is Privileged

O GON OVV1 . W N =

=y
o

Detailed Instructions

VM[RESUMEIREAD]WRITEI... ], INVEPT, INVVPID
INVD. XSETBV

ENCLS(e.g., ECREATE, EADD, EINIT, EDBGRD... )
RDMSR, WRMSR

IN, OUT, IN[S|SB|SW|SD], OUT[S|SB|SW|SD]

HLT, INVLPG, RDPMC, MONITOR, MWAIT, WBINVD
LGDT, LLDT, LTR, LIDT

MOV to/from DRo-DR7

MOV to/from CR3, MOV to/from CR8

MOV to/from CR0/CR4, CLTS, LMSW, SMSW

MOV to/from CR2

SWAPGS

CLI, STI

LAR, LSL. VERR, VERW

POPF, POPFQ

L[FS|DS|SS], MOV to [DS|ES|FS|GS|SS], POP [FS|GS]
Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Instruction?

<

K <<ZZZZ<<K<<<<<<<<=<<

Privileged Instruction Prevention Component
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* Using the Intel VT-x technique to configure
the VM exits directly.

Invalidating the Execution Effects.
* The execution does not change any state.
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Far CALL, Far RET, Far JMP

IRET, IRETD, IRETQ

SYSEXIT, SYSRET

XSAVES, XRSTORS, INVPCID

Instruction?
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Triggering VM Exit and Stopping Execution.

* Using the Intel VT-x technique to configure
the VM exits directly.

Invalidating the Execution Effects.
* The execution does not change any state.

Raising the Execution Exception and Stopping
Execution.
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* System-call Handling
— Convert the system calls to the hypercalls via mapping a code page.

* Containing two instructions: VMCALL and JMP *%RCX.
* TheIA32 LSTAR MSR register in guest points to this page.

— The kernel module vectors the system call table and calls the handlers.

* Interrupts and Exceptions Handling
— All these events trigger the VM exit via configuring the VMCS.
— The kernel module checks the call gates and vectors the IDT.

* Linux Signal Handling
— Check the signal queue, and switch the context via configuring the VMCS.
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* Defenses and Isolation Schemes:
— Defenses: O-CFl, Shadow Stack (SS), Code Pointer Integrity (CPI), and ASLR-Guard (AG)
— |Isolation: IH-based (randomization), MPX-based, MPK-based, and SEIMI-based schemes

 Microbenchmark
— Imbench v3.0-a9

the overheads imposed by SEIMI on kernel operations.

e Macrobenchmark the overheads on different isolation schemes.
— SPEC CPU2006 C/C++ benchmark with the ref input.

Real-world applications:

— 4 Web servers: Nginx, Apache, Lighttpd, and Openlitespeed.
— 4 Databases: MySQL, SQLite, Redis, and Memcached.

— 4 JavaScript engines: ChakraCore, Google V8, JavaScriptCore, SpiderMonkey.



I Microbenchmark Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.



I Microbenchmark Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.
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call I/O stat close TCP install handle proc proc proc
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* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

) null  null open select signal signal fork exec  sh Config 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Config call I/O stat close TCP install handle proc proc proc '
Native 021 026 057 123 535 027 099 355 870 2162 I;EIIWMGI 3'22 g'gg 3;} ?61:1% }i'é 181'432 }ég
SEIMI  |0.71 0.82 1.33 258 6.11 079 3.02 463 1029 2368 - A 3. - : - :
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I Microbenchmark

Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

] null null open select signal signal fork exec  sh
Config call I/O stat close TCP install handle proc proc proc
Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 6.11 0.79 3.02 463 1029 2368
Slowdown [2.4X 22X 1.3X LIX 14% 1.9X 21X 30.4% 18.3% 9.5%

Config | 2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K
Native 205 206 3.1 813 122 843 126
SEIMI | 246 245 36 101 148 11.52 159
Slowdown |20.0% 18.9% 16.1% 242% 213% 36.7% 26.2%

1

(in us): smaller is better.

Latency on process-related kernel operations

Mmap Prot Page 100fd

OK File 10K File
Config Create Delete Create Delete Latency Fault Fault select
Native 54717 477816 109 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 5.3421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowd0wn|27.2% 11.7% 33.0% 12.6%

84.4% 63.2% 33.6% 67.8%
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better.
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I Microbenchmark Imbench

* We run Imbench directly on SEIMI to only evaluate the overhead on kernel operations.

Config | 2p/OK 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

Native 2.05 2.06 3.1 8.13 12.2 8.43 12.6
SEIMI 246 245 3.6 10.1 14.8 11.52 15.9

Slowdown | 20.0% 18.9% 16.1% 24.2% 21.3% 36.7% 26.2%

null null open select signal signal fork exec  sh
call I/O stat close TCP install handle proc proc proc

Config

Native 021 0.26 0.57 1.23 535 027 099 355 870 2162
SEIMI 0.71 0.82 1.33 258 o6.11 0.79 3.02 463 1029 2368

Slowdown [2.4X 22X 1.3X LIX 14% 1.9X 21X 30.4% 18.3% 9.5%

J Latency on process-related kernel operations

(in us): smaller is better J Context-switching latency (in ps): smaller is better.

Pipe AF UDP RPC/ TCP RPC/ TCP
Config UNIX UDP TCP conn

Native 5582 92 9883 149 139 176 22
SEIMI 7428 11.7 11.7 20 176 239 24

Slowdown|33.l% 27.2% 18.4% 34.2% 26.6% 35.8% 9.1%

OK File 10K File Mmap Prot Page 100fd
Config Create Delete Create Delete Latency Fault Fault select

Native 54717 477816 109 6.6214 6779 0.636 0.1593 1.016
SEIMI 6.9623 53421 14.5 7.4527 12500 1.038 0.2128 1.705

Slowdown | 27.2% 11.7% 33.0% 12.6% 84.4% 63.2% 33.6% 67.8%

J File & VM system latency (in us): smaller is
better.

Local-communication latency (in us): smaller
is better.



I Macrobenchmark SPEC CPU 2006 benchmark

* Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%
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I Macrobenchmark SPEC CPU 2006 benchmark

* Compared with the MPX-based scheme, SEIMI achieves a lower performance overhead
on average, with the average reduction of 33.97%.

* Compared to the MPK-based scheme, SEIMI is more efficient in almost all test cases,
and with the average reduction of 42.3% (maximum is 133.33%).
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I Real-world Applications

e SEIMI is more

than VIPX-based and VIPK-based schemes on
protecting the real-world applications.

OCFI | | CPI AG
Applications IH MPX  MPK SEIMI | IH MPX MPK SEIMI| IH MPX MPK SEIMI IH MPX MPK SEIMI
Nginx 1.10%  3.86%  532%  177% | 186%  733% 1049%  243% | 090% 6.38% 895%  3.08% | 0.74% 7.60% 5.27%  2.01%
Apache 1.58%  471%  2.82%  182% | 1.64%  636%  683%  2.15% | 145% 5.01% 2.58%  1.80% — — — —
Lighttpd 294%  342%  574%  4.46% | 277%  685%  633%  378% | 1.70% 6.83% 342% = 2.46% — — — —
Openlitespeed | 1.44%  539%  388%  161% | 1.04%  1.92%  339%  142% | 091% 2.89% 2.99%  1.38% — — — —
MySQL 1.75%  12.09%  8.08%  3.79% | 3.17% = 9.60% 11.99%  3.94% — — — — — — — —
SQLite 1L61%  2.11%  270%  184% | 142%  346%  2.19%  194% | 1.36% 3.11% 2.66%  2.18% — — — —
Redis 451%  546% 1312% 10.31% | 118%  281% 536%  506% | 1.24% 447% 4.81%  3.93% — — — —
Memcached 1.64%  6.64%  146%  274% | 238%  557%  8.13% = 3.44% | 1.04% 6.02% 728%  1.60% — — — —
ChakraCore 3.03%  12.09%  9.90%  4.10% | 437%  7.92% 10.09%  5.15% — — — — — — — —
V8 257%  11.63%  5.04%  337% = 2.05%  801%  4.05%  2.96% — — — — — — — —
JavaScriptCore | 2.22% 2287%  39.65% 2681% | 20.69% 3834% 47.77% 31.82% — — — — — — — —
SpiderMonkey | 1.75%  932%  7.63% = 415% | 184%  756%  179%  5.19% — — — — — — — —

All overheads are normalized to the unprotected applications. “—” represents the defense failed to compile or run it.
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 SEIMI is more than VIPX-based and MIPK-based schemes on

protecting the real-world applications.

— SEIMI is much more efficient than MPK for all 32 cases.
— SEIMI is much more efficient than MIPX for 28 cases.
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I Conclusion @

We propose a highly efficient intra-process memory isolation technique
SEIMI, which leverages the widely used hardware feature — SMAP.

To avoid introducing security threats, we propose multiple new techniques
to ensure the user code run in ring o securely.

We believe that SEIMI can not only benefit existing defenses, but also open
the new research direction ...

— Enabling the efficient access to a variety of privileged hardware features, which does
not require context switch, to defenses.
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the cost of the handling of system calls VM Exit is six times slower than SYSCALL.
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I Two Weaknesses but Already Solved

* For I/O-intensive applications, SEIMI may be a double-edged sword:

— The performance benefit on the isolation may be counteracted or even far less than
the cost of the handling of system calls VM Exit is six times slower than SYSCALL.

* SEIMI must be coupled with defenses that restricts its scenarios.

— Since X86-64 ISA has variable length instructions, code alighment is critical:
unintended instruction can be executed when alignment is broken.

— But the binary rewriting technique is difficult to eliminate them with low runtime
overhead due to the POPF is only 1-Byte.



