
GREYONE: Data Flow Sensitive
Fuzzing

Shuitao Gan（甘水滔）
Tsinghua University

https://www.usenix.org/conference/usenixsecurity20/presentation/gan
Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu, Zuoning
Chen

Our previous work
• CollAFL: Path sensitive Fuzzing (IEEE S&P 2018)

• More precise edge feedback
• Prioritize seeds with more untouched branches

• Path Sensitivity is not enough to cover complicated branch.

Background
• CheckSum/Magic Bytes checking branches generally existed in

popular programs.
• Symbolic-based techniques are applied in fuzzing to alleviate

the problem(Driller, QSYM, DigFuzz..),
• open challenge of constraint solving

• Data flow analysis (e.g., dynamic taint analysis) has proven to
be useful for guiding fuzzing（TaintScope，Vuzzer，
Anogra..）.

Bottleneck of traditional taint analysis
 Consume large memory, execute slowly
 Under-taint by external call
 Under-taint by implicit control flow
 Over-taint by specified instructions

Leave many questions …

RQ1: How to perform lightweight and accurate taint
analysis for efficient fuzzing ?

RQ2: How to efficiently guide mutation with taint?

RQ3: How to tune fuzzers’ evolution direction with data flow
features?

GreyOne: Data Flow Sensitive Fuzzing
Our Solution

Architecture of GreyOne

7

 FTI :Fuzzing-driven Taint Inference

 Taint-Guided Mutation

 Conformance-Guided Evolution

 Selective testing

Solve RQ1

Solve RQ2

Solve RQ3
Performance optimization

Part 1: Fuzzing-driven Taint
Inference

8

Fuzzing-driven Taint Inference

9

Byte-level Mutation
 A set of predefined mutation

rules
 Single bit flipping
 Multiple-bits flipping
 Arithmetic operations

Variable Value Monitoring
 Static instrumentation

 Variables in constraints with
multiple-bits flipping

Taint Inference
 Taint rule

 If the value of a variable var changes, we could infer
that var is tainted and depends on the pos-th byte
of the input seed S.

Comparison with Traditional Taint
Analysis

10

Manual Efforts
 Traditional taint analysis

 Labor-intensive efforts
 Custom specific taint

propagation rules for each
instruction

 FTI
 Architecture independent
 No extra efforts to port to new

platforms

Speed
 Traditional taint analysis

 Slow
 Dynamic binary instrumentation

 FTI
 Fast
 Based on static code

instrumentation

Accuracy
 Traditional taint analysis

 Over-taint
 Under-taint

 FTI
 No over-taint
 Less under-taint

Application : Branch-Input Dependency

11

Branch-Input Dependency
 Identify Direct Copies of Inputs
 Identify InDirect Copies of Inputs

Performance of FTI

12

Average speed of analyzing
one seed by FTI
 FTI brings 25% overhead on

average

Proportion of tainted
untouched branches
reported
 FTI outperforms the classic taint

analysis solution DFSan
 FTI finds 1.3X more untouched

branches that are tainted

Part 2: Taint-guided Mutation

13

Related work: how to mutate(1)
The most efficient way to make fuzzing
smart
Where to mutate
What to mutate

Static analysis-based optimization
 Decomposing long constant comparisons

constraint recursively (laf-intel,steelix)
 Too many useless branches
 Helpless on non-constant comparisons

 Leverages static symbolic analysis to detect
dependencies among input bits, and uses it to
compute an optimal mutation ratio

 Slowly
 The calculated dependency between bits do not

show many improvements for mutation.

Learning-based model
 RNN-based model, predicting best

locations to mutate (Rajpal et.al)
 Slow training speed
 Get too many locations

 Deep reinforcement learning,
mutation actions prioritization

 The granularity of mutation
actions are too coarse

 Program smoothing and
incremental learning to guide mutation
(neuzz)

 Lack of accurate input-branches
dependence

Related work: how to mutate(2)

15

Taint-based mutation
 Locating buffer boundary violations and buffer over-read vulnerabilities

(Dowser, BORG)
 Tracking the regions of external seed inputs that affect sensitive library or

system calls (BuzzFuzz)
 Identifying checksum branch (TaintScope)
 Tracking magic bytes related variables (VUzzer)
 shape inference and gradient descent computation (Angora)

 Traditional dynamic taint analysis, many open problems

Our work on taint-guided Mutation

16

Taint-guided Mutation
• Prioritize Bytes to Mutate
• Prioritize Branches to Explore
• Determine Where and How to Mutate

17

Prioritize Bytes to Mutate

• IsUntouched returns 1 if the branch br is not explored by any test case so far,
otherwise 0.

• DepOn returns 1 if the branch br depends on the pos-th input byte, according to
FTI, otherwise 0.

18

Prioritize Branches to Explore

19

The weight of an untouched branch br in the according path as
the sum of all its dependent input bytes’ weight

Determine Where and How to Mutate

20

Where to mutate
 Exploring the untouched neighbor

branches along this path one by
one
 Descending order of branch

weight
 For specific untouched neighbor

branch
 Mutating its dependent input

bytes one by one
 Descending order of byte weight

How to mutate direct copies
of input
 Executing twice

 The first time used to get value
 The second time used to cover

relevant branch

How to mutate indirect
copies of input
 Random bit flipping and arithmetic

operations on each dependent byte
 Multiple dependent bytes could be

mutated together

Mitigate the under-taint
issue

 Randomly mutating their adjacent
bytes with a small probability

Part 3: Conformance-Guided
Evolution

21

Related work on selecting and updating
seeds

22

Evolutionary direction
control
Covering more code
Discovering more vulnerabilities
Triggering relevant behavior

Related work
 AFLFast (CCS’16): seeds being picked fewer

or exercising less-frequent paths
 Vuzzer (NDSS’17): seeds exercising deeper

paths
 QTEP (FSE’17): seeds covering more faulty

code
 AFLgo (CCS’17): seeds closer to target

vulnerable paths
 SlowFuzz (CCS’17): seeds consuming more

resources

Our previous solution
Prioritize seeds with more
untouched branches(CollAFL-br, s&p
18’)
20% more paths over AFL

Data flow features: conformance of
constraints

23

Conformance of constraints
 Expressing the distance of tainted variables

to the values expected in untouched
branches
 Higher conformance means lower

complexity of mutation

Advantages
 Few extra instrumented overhead
 Keep the original construct of

program
 Non-constant variables

comparison branch could be
calculated

Q1: How to evaluate single constraint?
Q2 How to evaluate a set of constraints?

Conformance of one branch

Conformance of a basic block

A set of constraints : Conformance of one path

Details of Conformance Calculation

24

Conformance-Guided Seed Updating
• Two-Dimensional Seed Queue

25

Traditional seed queues are usually kept in a linked list, where
each node represents a seed that explores a unique path

GREYONE extend each node to include multiple seeds that explore
a same path and have a same conformance but different block
conformance, to form a two-dimensional seed queue

Conformance-Guided Seed Updating
• Seed queue Updates

26

since the test case has a
unique distribution of
basic block conformance,
it could derive new test
cases to quickly trigger
untouched neighbor
branches of some basic
blocks

Conformance-Guided Seed Selection

27

Advantages: accelerate the evolution of
fuzzing

 Long-term stable improvements
 Avoid getting stuck in local minimum like gradient

descent algorithm(s&p 2018)
 The conformance focuses on untouched branches,

which is better than the measurement of Honggfuzz
and libfuzzer

Giving priority to seeds with high conformance
Combining with updating

mechanism

Part 4: Performance Optimization

28

Related work

29

Boosting
 Parallel execution(Wen Xu,ccs17)
 Instrumentation (Instrim NDSS 18,Untracer s&p19)

 Removing unnecessary instrumentation

Execution enviroment
 Fork
 Forkserver
 Persistent
 IPT

Our work

30

Selective execution mechanism
 GREYONE has two more modes during testing

 Variable value monitoring mode used for FTI
 Conformance-guided tracking mode for evolution tuning

 Extending the fork server used by AFL to switch
between them on demand
 When conformance tracking mode brought few

conformance promotion, switching to normal tracking
mode

Performance Optimization

31

Selective execution
mechanism

 By comparing these two
mode with AFL
 The mode without selective

mechanism will slow down to less
than 65%

 GREYONE’s could keep execution
speed more than 80%

Evaluation

32

Vulnerabilities Discovery

Number of vulnerabilities (accumulated in 5 runs) detected
by 6 fuzzers, including AFL, CollAFL-br, VUzzer,
Honggfuzz,Angora, and GREYONE, after testing each
application for 60 hours

33

Testing 19 popular
applications
GREYONE detected 209%
more vulnerabilities (41
CVEs)

CVEs

34

libwpd CVE-2017-14226, CVE-2018-
19208

libtiff CVE-2018-19210
libbson CVE-2017-14227,

libncurses CVE-2018-19217, CVE-2018-
19211

libsass CVE-2018-19218, CVE-2018-
19218

libsndfile CVE-2018-19758

nasm

CVE-2018-19213, CVE-2018-
19215, CVE-2018-19216, CVE-
2018-20535, CVE-2018-20538,
CVE-2018-19755

libwebm CVE-2018-19212
libconfuse CVE-2018-19760

libsixel

CVE-2018-19757, CVE-2018-
19756, CVE-2018-19762, CVE-
2018-19761, CVE-2018-19763,
CVE-2018-19763

libsolv CVE-2018-20533, CVE-2018-
20534, CVE-2018-20532

libLAS
CVE-2018-20539, CVE-2018-
20536, CVE-2018-20537, CVE-
2018-20540

libxsmm CVE-2018-20541, CVE-2018-
20542, CVE-2018-20543

Libxsmm: CVE-2018-20541

Libsixel:CVE-2018-19757

Unique Crashes Evaluation

Number of unique crashes (average and
maximum count in 5 runs) found in real
world programs by various fuzzers

35

The growth trend of number of unique
crashes (average and each of 5 runs)
detected by AFL, CollAFL-br, Angora
and GREYONE

Code Coverage Evaluation

Number of unique crashes (average and
maximum count in 5 runs) found in real
world programs by various fuzzers

36

The growth trend of number of unique
paths (average in 5 runs) detected by
AFL, CollAFL-br, Angora and
GREYONE

Further evaluation

37

Heuristic Constraints Solving

38

On average, GREYONE found 1.2X unique paths, 1.12X edges, 2.15X
unique crashes and 1.52X vulnerabilities than QSYM.

Improvements Breakdown (FTI)

39

FTI could double the code coverage on all targets, comparing to
GREYONE-DTA.

Improvements Breakdown
 (byte prioritization and conformance-guided evolution)

40

Conclusion

41

42

We propose a novel data flow sensitive fuzzing
solution GREYONE
 where Fuzzing-driven taint inference is further more efficient than

traditional dynamic taint inference
 It performs better performance than many popular fuzzing tools

including AFL, CollAFL, Honggfuzz in terms of code coverage and
vulnerabilities discovery

 It detected 105 unknown vulnerabilities with 41 CVEs

Thanks!
Q&A

