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Our previous work
• CollAFL: Path sensitive Fuzzing (IEEE S&P 2018)

• More precise edge feedback
• Prioritize seeds with more untouched branches

• Path Sensitivity is not enough to cover complicated branch.



Background
• CheckSum/Magic Bytes checking branches generally existed in 

popular programs.
• Symbolic-based techniques are applied in fuzzing to alleviate 

the problem(Driller, QSYM, DigFuzz..),
• open challenge of constraint solving

• Data flow analysis (e.g., dynamic taint analysis) has proven to 
be useful for guiding fuzzing（TaintScope，Vuzzer，
Anogra..）.



Bottleneck of traditional taint analysis 
 Consume large memory, execute slowly
 Under-taint by external call
 Under-taint by implicit control flow 
 Over-taint by specified instructions 



Leave many questions …

RQ1: How to perform lightweight and accurate taint 
analysis for efficient fuzzing ?

RQ2: How to efficiently guide mutation with taint?

RQ3: How to tune fuzzers’ evolution direction with data flow 
features?



GreyOne: Data Flow Sensitive Fuzzing
Our Solution



Architecture of GreyOne
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 FTI :Fuzzing-driven Taint Inference

 Taint-Guided Mutation

 Conformance-Guided Evolution

 Selective testing

Solve RQ1

Solve RQ2

Solve RQ3
Performance optimization



Part 1: Fuzzing-driven Taint 
Inference 
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Fuzzing-driven Taint Inference 
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Byte-level Mutation
 A set of predefined mutation 

rules
 Single bit flipping
 Multiple-bits flipping
 Arithmetic operations

Variable Value Monitoring
 Static instrumentation

 Variables in constraints with 
multiple-bits flipping

Taint Inference
 Taint rule

 If the value of a variable var changes, we could infer 
that var is tainted and depends on the pos-th byte 
of the input seed S.



Comparison with Traditional Taint 
Analysis
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Manual Efforts
 Traditional taint analysis 

 Labor-intensive efforts
 Custom specific taint 

propagation rules  for each 
instruction 

 FTI 
 Architecture independent
 No extra efforts to port to new 

platforms

Speed
 Traditional taint analysis 

 Slow
 Dynamic binary instrumentation 

 FTI 
 Fast
 Based on static code 

instrumentation

Accuracy
 Traditional taint analysis 

 Over-taint
 Under-taint

 FTI 
 No over-taint
 Less under-taint



Application : Branch-Input Dependency
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Branch-Input Dependency
 Identify Direct Copies of Inputs
 Identify InDirect Copies of Inputs



Performance of FTI
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Average speed of analyzing 
one seed by FTI
 FTI brings 25% overhead on 

average

Proportion of tainted 
untouched branches 
reported
 FTI outperforms the classic taint 

analysis solution DFSan
 FTI finds 1.3X more untouched 

branches that are tainted



Part 2: Taint-guided Mutation
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Related work: how to mutate(1)
The most efficient way to make fuzzing 
smart
Where to mutate
What to mutate

Static analysis-based optimization
 Decomposing long constant comparisons 

constraint recursively (laf-intel,steelix)
 Too many useless branches
 Helpless on non-constant comparisons

 Leverages static symbolic analysis to detect 
dependencies among input bits, and uses it to 
compute an optimal mutation ratio

 Slowly
 The calculated dependency between bits do not 

show many improvements for mutation.

Learning-based model
 RNN-based model, predicting best 

locations to mutate (Rajpal et.al)
 Slow training speed
 Get too many locations

 Deep reinforcement learning, 
mutation actions prioritization 

 The granularity of mutation 
actions  are too coarse

 Program smoothing and 
incremental learning to guide mutation 
(neuzz)

 Lack of accurate input-branches 
dependence



Related work: how to mutate(2)

15

Taint-based mutation
 Locating buffer boundary violations and buffer over-read vulnerabilities 

(Dowser, BORG)
 Tracking the regions of external seed inputs that affect sensitive library or 

system calls (BuzzFuzz)
 Identifying checksum branch (TaintScope)
 Tracking magic bytes related variables (VUzzer)
 shape inference and gradient descent computation (Angora)

 Traditional dynamic taint analysis, many open problems



Our work on taint-guided Mutation
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Taint-guided Mutation
• Prioritize Bytes to Mutate
• Prioritize Branches to Explore
• Determine Where and How to Mutate
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Prioritize Bytes to Mutate

• IsUntouched returns 1 if the branch br is not explored by any test case so far, 
otherwise 0. 

• DepOn returns 1 if the branch br depends on the pos-th input byte, according to 
FTI, otherwise 0.
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Prioritize Branches to Explore
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The weight of an untouched branch br in the according path as 
the sum of all its dependent input bytes’ weight



Determine Where and How to Mutate
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Where to mutate
 Exploring the untouched neighbor 

branches along this path one by 
one
 Descending order of branch 

weight
 For specific untouched neighbor 

branch  
 Mutating its dependent input 

bytes one by one
 Descending order of byte weight

How to mutate direct copies 
of input
 Executing twice

 The first time used to get value
 The second time used to cover 

relevant branch

How to mutate indirect 
copies of input
 Random bit flipping and arithmetic 

operations on each dependent byte
 Multiple dependent bytes could be 

mutated together

Mitigate the under-taint 
issue

 Randomly mutating their adjacent
bytes with a small probability



Part 3: Conformance-Guided 
Evolution
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Related work on selecting and updating 
seeds
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Evolutionary direction 
control
Covering more code 
Discovering more vulnerabilities
Triggering  relevant behavior

Related work
 AFLFast (CCS’16):  seeds being picked fewer 

or exercising less-frequent paths
 Vuzzer (NDSS’17): seeds exercising deeper 

paths
 QTEP (FSE’17): seeds covering more faulty 

code
 AFLgo (CCS’17): seeds closer to target 

vulnerable paths
 SlowFuzz (CCS’17): seeds consuming more 

resources

Our previous solution
Prioritize seeds with more 
untouched branches(CollAFL-br, s&p 
18’)
20% more paths over AFL 



Data flow features: conformance of 
constraints
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Conformance of constraints
 Expressing the distance of tainted variables 

to the values expected in untouched 
branches
 Higher conformance means lower 

complexity of mutation

Advantages
 Few extra instrumented overhead
 Keep the original construct of 

program
 Non-constant variables 

comparison branch could be 
calculated 

Q1: How to evaluate single constraint?
Q2 How to evaluate a set of constraints?

Conformance of one branch

Conformance of a basic block

A set of constraints : Conformance of one path



Details of Conformance Calculation
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Conformance-Guided Seed Updating
• Two-Dimensional Seed Queue
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Traditional seed queues are usually kept in a linked list, where 
each node represents a seed that explores a unique path

GREYONE extend each node to include multiple seeds that explore 
a same path and have a same conformance but different block 
conformance, to form a two-dimensional seed queue



Conformance-Guided Seed Updating
• Seed queue Updates
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since the test case has a 
unique distribution of 
basic block conformance, 
it could derive new test 
cases to quickly trigger 
untouched neighbor 
branches of some basic 
blocks



Conformance-Guided Seed Selection
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Advantages: accelerate the evolution of 
fuzzing

 Long-term stable improvements
 Avoid getting stuck in local minimum like gradient 

descent algorithm(s&p 2018)
 The conformance focuses on untouched branches, 

which is better than the measurement of Honggfuzz 
and libfuzzer

Giving priority to seeds with high conformance
Combining with updating  

mechanism



Part 4: Performance Optimization
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Related work
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Boosting 
 Parallel execution(Wen Xu,ccs17)
 Instrumentation (Instrim NDSS 18,Untracer s&p19)

 Removing unnecessary instrumentation

Execution enviroment
 Fork
 Forkserver
 Persistent
 IPT



Our work
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Selective execution mechanism
 GREYONE has two more modes during testing

 Variable value monitoring mode used for FTI
 Conformance-guided tracking mode for evolution tuning

 Extending the fork server used by AFL to switch 
between them on demand
 When conformance tracking mode  brought few 

conformance promotion, switching to normal tracking 
mode



Performance Optimization
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Selective execution 
mechanism

 By comparing these two 
mode with AFL
 The mode without selective 

mechanism will slow down to less 
than 65%

 GREYONE’s could keep execution 
speed more than 80%



Evaluation
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Vulnerabilities Discovery

Number of vulnerabilities (accumulated in 5 runs) detected 
by 6 fuzzers, including AFL, CollAFL-br, VUzzer, 
Honggfuzz,Angora, and GREYONE, after testing each 
application for 60 hours
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Testing 19 popular 
applications
GREYONE detected 209% 
more vulnerabilities (41 
CVEs)



CVEs
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libwpd CVE-2017-14226,  CVE-2018-
19208

libtiff CVE-2018-19210
libbson CVE-2017-14227,

libncurses CVE-2018-19217, CVE-2018-
19211

libsass CVE-2018-19218, CVE-2018-
19218

libsndfile CVE-2018-19758

nasm

CVE-2018-19213, CVE-2018-
19215, CVE-2018-19216, CVE-
2018-20535, CVE-2018-20538, 
CVE-2018-19755

libwebm CVE-2018-19212
libconfuse CVE-2018-19760

libsixel

CVE-2018-19757, CVE-2018-
19756, CVE-2018-19762, CVE-
2018-19761, CVE-2018-19763, 
CVE-2018-19763

libsolv CVE-2018-20533, CVE-2018-
20534, CVE-2018-20532

libLAS
CVE-2018-20539, CVE-2018-
20536, CVE-2018-20537, CVE-
2018-20540

libxsmm CVE-2018-20541, CVE-2018-
20542, CVE-2018-20543

Libxsmm: CVE-2018-20541

Libsixel:CVE-2018-19757



Unique Crashes Evaluation

Number of unique crashes (average and 
maximum count in 5 runs) found in real 
world programs by various fuzzers
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The growth trend of number of unique 
crashes (average and each of 5 runs) 
detected by AFL, CollAFL-br, Angora 
and GREYONE



Code Coverage Evaluation

Number of unique crashes (average and 
maximum count in 5 runs) found in real 
world programs by various fuzzers
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The growth trend of number of unique 
paths (average in 5 runs) detected by 
AFL, CollAFL-br, Angora and 
GREYONE



Further evaluation
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Heuristic Constraints Solving
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On average, GREYONE found 1.2X unique paths, 1.12X edges, 2.15X 
unique crashes and 1.52X vulnerabilities than QSYM.



Improvements Breakdown (FTI)
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FTI could double the code coverage on all targets, comparing to 
GREYONE-DTA. 



Improvements Breakdown
 (byte prioritization and conformance-guided evolution)
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Conclusion
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We propose a novel data flow sensitive fuzzing 
solution GREYONE
 where Fuzzing-driven taint inference is further more efficient than 

traditional dynamic taint inference
 It performs better performance than many popular fuzzing tools 

including AFL, CollAFL, Honggfuzz in terms of code coverage and 
vulnerabilities discovery

 It detected 105 unknown vulnerabilities with 41 CVEs



Thanks!
Q&A


