
ProFuzzer: On-the-fly Input Type Probing for
Better Zero-day Vulnerability Detection

Wei You, Xueqiang Wang, Shiqing Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, Bin Liang

Email: {you58, ma229, xyzhang}@purdue.edu, {xw48, xw7}@indiana.edu,
{hjj, liangb}@ruc.edu.cn

Mutation Selection

Seed Corpus Mutated Input Code Coverage

Store mutated input if new coverage is hit

Execution

Seed Input

Hit New
Coverage

?

Mutation-based Fuzzing

• Starts from a set of valid input instances as seeds

• Continuously modify to explore various execution paths

Effectiveness of AFL

More than 1.5 million mutations
are performed on the 31st byte
(0x1F), which is ineffective for
coverage improvement.

Observation 1: More than 60% of
the mutations are performed on
the input bytes that are ineffective.

Effectiveness of AFL

Observation 2: effective mutation
ratio (EMR) drops very quickly.

Code coverage is hardly improved
after 8 hours.

EMR =

mutations that increase coverage

total mutations

Existing Works

• Improve the breadth
• Seed selection: Rebert et al. [SEC 14], Moonshine [SEC 18]

• Seed prioritization: AFLFast [CCS 16], Steelix [FSE 17], FairFuzz [ASE 18]

• Improve the depth
• Taint analysis: BuzzFuzz [ICSE 09], TaintScope [S&P 12], VUzzer [NDSS 17]

• Symbolic execution: Driller [NDSS 16], QSYM [SEC 18], T-Fuzz [S&P 18]

• Gradient-based search: Angora [S&P 18], NEUZZ [S&P 19]

• Basic idea: on-the-fly input structure understanding & utilizing

• Probe input types in a light-weight manner
• Per-byte mutation observation

• Field identification

• Type discovery

• Leverage type information to guide further mutations
• Explore valid values for better code coverage

• Exploit specific values that may lead to a vulnerability

• Application-agnostic v.s. application-specific types
• Application-agnostic: raw data, size, etc.

• Application-specific: ip address, pdf data structure, etc.

ProFuzzer

Fuzzing-related Input Types

i. Assertion

ii. Raw Data

iii. Enumeration

iv. Offset

v. Size

vi. Loop Count

Probing: observing per-byte mutation effect

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00000000h: 42 4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

 00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

 00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

 00000030h: 00 00 00 00 00 00 FF FF FF 00 FF FF FF 00

original
execution trace

mutated
execution trace

diff

trace
difference

execution profiles

[0x00 0x01 …... 0xFF]

…...

Field Identification: group consecutive bytes

execution profile of byte 0x00

[0x00 0x01 …... 0xFF]

…...

execution profile of byte 0x01

[0x00 0x01 …... 0xFF]

execution profile of byte 0x02

[0x00 0x01 …... 0xFF]

…... …...

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00000000h: 42 4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

 00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

 00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

 00000030h: 00 00 00 00 00 00 FF FF FF 00 FF FF FF 00

• Group bytes at offsets from i to j together as a field

 if they share the same invalid

execution profile (i.e., equal

minimum similarity)

profile similarity graph of byte 0x00 profile similarity graph of byte 0x01

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00000000h: 42 4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

 00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

 00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

 00000030h: 00 00 00 00 00 00 FF FF FF 00 FF FF FF 00

minimal
similarity

Field Identification: group consecutive bytes

• Enumeration • Size

If there exists a valid value set VS, such that:

values in VS correspond to large similarity;

other values correspond to small similarity.

If there exists a bound value bv, such that:

values within bv correspond to large similarity;

values beyond bv correspond to small similarity.

profile similarity graph of the 28th byte (0x1C) profile similarity graph of the 22nd byte (0x16)

Type Inference: determine type of each field

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00000000h: 42 4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

 00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

 00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

 00000030h: 00 00 00 00 00 00 FF FF FF 00 FF FF FF 00

Assertion Raw Data Enumeration Loop Count Offset Size

By matching execution profiles with different feature patterns,
the type of each input field is identified.

Type Inference: determine type of each field

Type-guided Exploration (for better coverage)

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00000000h: 42 4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

 00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

 00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

 00000030h: 00 00 00 00 00 00 FF FF FF 00 FF FF FF 00

Assertion Raw Data Enumeration Loop Count Offset Size

For size field: increase its value by X and appends X bytes data

Limit mutation to all the valid values of the field type.

Type-guided Exploitation (for bug detection)

 0 1 2 3 4 5 6 7 8 9 a b c d e f

 00000000h: 42 4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

 00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

 00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

 00000030h: 00 00 00 00 00 00 FF FF FF 00 FF FF FF 00

Assertion Raw Data Enumeration Loop Count Offset Size

location_end - location_current = 0x27

location_end

location_current

Exploit a set of special values that may lead to potential vulnerabilities.

Evaluation

• Generality of Assumptions

• Input Size and Path Coverage

• Probing Accuracy

• Finding Zero-day Vulnerabilities

• Evaluation on Standard Benchmarks

• Exposing Known Vulnerabilities

• Performance

Probing Accuracy

• ProFuzzer: 5.3% FP, 4.6% FN • AFL-analysis: 42.7% FP, 69.6% FN

Finding Zero-day Vulnerabilities

Evaluation on Standard Benchmarks

• ProFuzzer reaches more target locations than other fuzzers

• ProFuzzer is 2.26 to 8.85 times faster than other fuzzers

Performance

• ProFuzzer archives 27% ~ 227% more path coverage than other fuzzers

• ProFuzzer spends 53% ~ 79% less time to reach the same coverage

• ProFuzzer keeps relatively high effective mutation ratio

Comparison on Path Coverage Comparison on Effective Mutation Ratio

Closely Related Works

• Input structure reverse engineering
• Tupni [CCS 08]: identify input bytes relations via symbolic execution

• Reward [NDSS 10]: propagates program type through syscalls and instructions

• Howard [NDSS 11]: analyze memory access patterns during program execution

• Field-aware fuzzing
• Steelix [FSE 17] infers magic value bytes by intercepting string comparisons

• TIFF [ACSAC 18] infers program type (e.g., int, string) via taint analysis

• Angora [S&P 18] infers shape and size of input bytes via taint analysis

• Difference:
• ProFuzzer adopts lightweight mechanism instead of heavyweight analysis

• ProFuzzer infers application-agnostic and fuzzing-related types

Conclusion

• Leverage on-the-fly type learning to improve fuzzing
• Probe input fields and types by observing the fuzzing process

• Explore valid values for better code coverage

• Exploit the values that could lead to an vulnerability

• Results:
• Better performance on code coverage and vulnerability exposure

• 42 zero-day vulnerabilities, 30 of which are assigned CVEs

Thank you!

Q&A

