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What are We Talking about? 

• Discuss the challenges of kernel exploit development 

•  Introduce an exploit technique to bypass widely deployed 
kernel mitigations 

• Discuss how to automate the exploit technique 
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Background 
• OS kernels are written in 

low-level languages C/C++ 
•  Linux: C 
•  Windows: C  and C++ 

• OS kernels are prone to 
memory corruption bugs 

•  Out of Bounds Access, Use-After-
Free, data race and even type 
confusion (in C++ components) 

•  Bugs in OS kernel are plenty 
and many of them are 
exploitable 
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•  Exploit Mitigation: make 
exploit harder with ignorable 
cost 
•  The cost to prove 

exploitability is increasing 
•  Exploitability: a predicate 

related to each bug 
•  A concrete “kernel exploit” 

could serve as a proof of 
exploitability 



Background (cont.) 
•  Automatic exploit generation systems: capable of 

generating concrete exploits 
•  Automatic exploit generation systems in two steps: 

1.  Identifying exploit primitives  
2.  Evaluating exploit primitives 

•  Exploit primitive: 
•  A machine state which empowers an attacker to craft an exploit 

(a.k.a. programming weird machine) 
•  Data flow: Writing 8 bytes anywhere, write 1 byte to adjacent heap chunk 

etc. 
•  Control flow: Control-flow hijacking  

•  Control-flow hijacking primitive is one of the most popular 
exploit primitives. 
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Crafting a control-flow hijacking kernel exploit 
•  Step 1. Adjusting parameters of system calls 

and memory layout 
•   [USENIX-SEC18][CCS 16] 

Getting	a	control-
flow	hijacking	
primitive	

Adjusting	syscall	
parameters	and		
memory	layout	

Executing	
exploitation	
payload	

1

2

3

[USENIX-SEC14] Vasileios et al., ret2dir: Rethinking Kernel Isolation 
[CCS 16] Xu et al., From Collision To Exploitation: Unleashing Use-After-
Free Vulnerabilities in Linux Kernel. 
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for 
Exploitation. 
[P0 blog] Andrey Konovalov. Exploiting the Linux kernel via packet sockets. 
[POC2016] Dong-hoon you. New reliable android kernel root exploitation 
techniques. 

•  Step 2. Getting a control-flow hijacking 
primitive 

•  [P0 blog][POC16] 
•  Step 3. Payload execution 

•  [USENIX-SEC 14] 
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Key Step: from control-flow hijack to ROP payload 
execution 

Getting	a	
control-flow	
hijacking	
primitive	

How	to	bootstrap	a	ROP	attack?	(e.g.	Transition	S	->	S’)	

Executing	
exploitation	
payload	(e.g.	
through	ROP)	

Semantic	of	an	example		ROP	
payload	

	
commit_creds(prepare_kernel_cre
d(0))	
...	
(fixing	context	and	safely	return	to	
userspace)	
...	
execve(“/bin/sh”,NULL,NULL)	

Kernel	State	S	
gdb>	info	registers	
  rsp: x rip: 0x41424344 !
  … !
gdb> x/10gx $rsp!
X    : ???????? ???????? !
X+8  : ???????? ???????? !
 

Kernel	State	S’	
gdb>	info	registers	
  rsp: x’ rip: 0x51525354 !
  … !
gdb> x/10gx $rsp!
X’    : 41414141 41414141 !
X’+8  : 41414141 41414141 !
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Challenge 1. kernel exploit mitigations 

kernel	
space	

user	
space	

Control	register	

virtualization-based	hypervisor	

cr4	

corrupted	
code	ptr	shellcode	

blocked	
by	SMEP	

corrupted	
data	ptr	

crafted	
data	
object	

protected	by	
hypervisor	

physmap	

Non-
executable	
physmap	
region	

blocked	by	SMAP	

gadget	functions	
(e.g.	

call_usermodehe
lper	)	

shortcuts	
patched	

native_write_
cr4()	
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Challenge 2. ill-suited exploit primitive  

•  Lack of stack pivoting 
gadget in Linux kernel 

•  traditional stack pivoting 
gadget blocked by SMAP 
because it accesses user-
space memory 

•  Intra-kernel stack pivoting 
gadget sometimes does 
not exist. 

•  Insufficient control over 
registers for invoking 
kernel functions 

Fake	stack	in		
User-Space	
pop	***,	ret	
…	
pop	***,	ret	
…	

blocked	
by		
SMAP		

call	rax	

xchg	eax,	esp	;	
ret	

xchg	rdi,	rsp	;	
ret	

Lack	of	
gadget	

Fake	stack	in	
kernel-space	
pop	***,	ret	
…	
pop	***,	ret	
…	

call	
copy_from_user	

smash	
current	
kernel	
stack 

Insufficient	
register	
control	

copy_from_user
(dst,	src,	size) 
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Challenge 3. exploit path pitfall 
User-space 

Kernel-space 

Trigger	
vuln. 

CFHP 

kernel panic pitfall 

CFHP 

Trigger	
vuln. 

User-space 

Kernel-space 

Trigger	
vuln. 

CFHP 

pitfall 

smash	
Kern.		
Stack 

exec.	
ROP	
chain	

Our	Solution:	“single-shot”	exploitation 
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Roadmap 

•  Challenges 
• Our Technique 
•  Evaluation with real-world Linux kernel vulnerabilities 
•  Conclusion 
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Overview of “single-shot” Exploitation 

CFHP 

“Blooming	gadget” 

indirect	jmp/call 

… 

…	
indirect	
jmp/call	
…	
…	
indirect	
jmp/call 

“Bridging	gadget” 

…	
indirect	
jmp/call 

“Auxiliary	gadget” 

call		
copy_to_user	
…	
return 

“Disclosure	gadget” 

call		
copy_from_user	
…	
ret 

“Stack	overflow	gadget” 
Arbitrary	
ROP		

payload 
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•  copy_from_user(dst, src, 
size) 

•  Data channel between user-
space and kernel-space 

•  Destination is kernel stack  
for 91% invocations of 
copy_from_user() in Linux 
kernel 4.15. 

•  Short return 
•  Check for non-zero return 

value and returns -EFAULT 
•  Short return path exists for 

more than 99% invocations 
in Linux kernel 4.15 

static	long	bsg_ioctl(struct	file	*file,	unsigned	
int	cmd,	unsigned	long	arg){	
				struct	sg_io_v4	hdr;	//	destination	is	local	
variable	
				…	
				if	(copy_from_user(&hdr,	uarg,	
sizeof(hdr)))	{	
								return	-EFAULT;	//	short	return		
				}	
	
 

Stack smashing gadget 

pagefault

userspace kernelP1

P2

n

rsp (=rdi=dst)
stack canary

rsi (=src)

unmapped
page

data successfully 
migrated

data failing to 
copy

ROP payload
stack canary

ROP payload

n+1
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•  copy_to_user(to, from, 
n) 

•  Copying kernel data to 
user-space 

•  Src is usually kernel 
stack (82% in 4.15) 

•  Short return path 
exists 

•  Problem: 
•  Caller of copy_to_user 

also protected by stack 
canary 

SYSCALL_DEFINE2(gettimeofday,	struct	
timeval	*,	tv,	struct	timezone	*,	tz){		
				struct	timeval	ktv;		
				…	
				if(copy_to_user(tv,	&ktv,	sizeof(ktv)))	{	
								return	-EFAULT;		
				}		
				…	
 

Bypassing stack canary: stack disclosure gadget 
 

stack canary

userspace kernel

(mapped)
P1

P2

n (=rdx)

rsp (=rsi=src)

stack canary

pagefault

rdi

(unmapped)

data successfully 
migrated

data failing to 
copy13	



•  Auxiliary function 
gadget 

•  Protected by 
stack canary 

•  controllable 
indirect call 

•  Leaking stack 
canary by 
combination of  

•  Auxiliary 
function, and 

•  Canary disclosure 
gadget 

Bypassing stack canary (cont.) 
  push    rbp
  mov     rbp, rsp
  push    r12
  ...
  sub     rsp, 58h
  mov     rax, gs:qword_28
  mov     [rbp-30h], rdi
  mov     rax, [rdi]
  call    rax
  ...

Auxiliary function gadget
  lea     rsi, [rbp-60h]
  call    _copy_to_user
  test    rax, rax
  jnz     fail
  ...
fail:
  mov     rbx, FFFFFFF2h
  jmp     exit
  ...

exit:
  mov     rcx, 
[rbp-30h]
  xor     rcx, 
gs:qword_28
  jnz     panic
  add     rsp, 60h
  pop     rbx
  ...
  ret

Canary disclosure gadget

stack right before “call rax“

local variables
rsp

rbp

rbp-0x30
rsp+0x58

return addr

stack canary

return addr

local variables

rsp

rbp

rbp-0x30
rsp+0x60

return addr

stack right after “call rax“

stack canary
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static	void	
aliasing_gtt_unbind_vma(struct	
i915_vma	*vma)	{	
				…	
				vma->vm->clear_range(vma->vm,	
vma>node.start,	vma->size);	
…	
} 

Enhancing register control: blooming gadget 

•  Linux kernel code have features 
of object-oriented 
programming  

•  “self” passed as first parameter 

•  Blooming gadget: 
•  Given register rdi is under 

control  
•  A family of kernel functions 

containing an indirect call   
•  target is controllable 
•  three parameters of the indirect 

call are controllable 
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Bridging gadget 
•  Bridging gadget 

•  Containing multiple 
controllable indirect calls  

•  Spawning two CFHPs and 
combining canary leak and 
stack smash into a single 
shot.  

 

Layout	of	struct	“regmap” 

loc
k 

unloc
k 

A B .physmap	page		
under	our	control 

map	
 

auxiliary	&	
disclosure	
gadget 

Stack	smash	
gadget 

void	regcache_mark_dirty(struct	
regmap	*map){	
			map->lock(map->lock_arg);//	the	1st	
control-flow	hijack		
			map->cache_dirty=true;	
			map->no_sync_defaults=true;	
			map->unlock(map->lock_arg);//	the	
2nd	control-flow	hijack	
} 
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Implementation 
•  Collecting candidate gadgets with static 

analysis 
•  Built on IDA-Pro SDK 6.95 

•  Taking Exploit chain identification as a tree 
search problem 

•  28 workers to search different sub-trees 
concurrently 

•  Stitching gadgets with symbolic execution 
•  Built on angr 
•  Initialization: QEMU snapshot 
•  Pruning: checking constraints satisfiability at key 

locations  
•  State explosion mitigations: 

•  Giving up after 20 steps for each stage 
•  Entering a loop for less than 5 times. 

CFHP 

… 

… 

… 

… 

… 

Blooming	 

Bridging 

Auxiliary 

Canary	
disclosure 

Stack	
overflow 
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Evaluation  
•  Test Cases: 

•  16 CVEs + 3 CTF challenges 

•  Comparing with previous 
exploit generation/
hardening techniques 

•  FUZE: relying on an exploit 
technique named “CR4 
hijacking”  

•  Not bypassing VMM-based 
hypervisor 

•  Not bypassing exploitation 
pitfalls 

•  Q : relying on stack-pivoting 
gadget which is not 
available in the kernel 
binary image 
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Evaluation (cont.) 

•  Finding exploit 
chain in 50 wall 
clock minutes  

• Generating tens 
of thousands of 
exploit chains 

• Hard to defeat 
because the 
gadget could not 
be easily 
removed. 
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Conclusions 

•  New technique: Single-shot exploitation is an effective kernel 
exploitation technique 

•  Reduction: From “ROP is Turing  Complete” to “control-flow hijacking is 
Turing Complete” 

•  New tool: Kepler is able to convert Linux kernel ROP 
bootstrapping task into a bounded tree-search problem and 
facilitate evaluation of control-flow hijacking primitive 

•  Source: https://github.com/ww9210/ kepler-cfhp 
 

•  Suggestion: Kernel CFI should be deployed because other 
mitigations hardly stop exploitation 
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Thank you. 
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kernel state 
RIP: 0xdeadbeef RSP: x
  x  : ?????????? ??????????
x + 8: ?????????? ??????????
…

KEPLER

Gadget Stitching

Input

CFHP
Constructing 
Kernel Stack-

Overflow

Candidate Gadgets

“single-shot” 
exploit

Arbitrary ROP 
payload

Enhancing CFHP

Performing Static 
analysis

Kernel Binary 
Image

kernel state’
RIP: 0xdeadbeef RSP: x’

  x’  : 0x41414141 0x41414141
x’ + 8: 0x41414141 0x41414141
…

Bootstrapping
any ROP chain

Q&A 
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