
KEPLER:	Facilitating	Control-flow	
Hijacking	Primitive	Evaluation	for	

Linux	Kernel	Vulnerabilities		
Wei Wu1,2,3, Yueqi Chen2, Xinyu Xing2, Wei Zou1,3

1.  CAS-KLONAT, BKLONSPT, Institute of Information Engineering, Chinese Academy of Sciences
2.  College of Information Sciences and Technology, Pennsylvania State University

3.  School of Cyber Security, University of Chinese Academy of Sciences

Jan	5,	2020 1	

InForSec	2020

What are We Talking about?

• Discuss the challenges of kernel exploit development

•  Introduce an exploit technique to bypass widely deployed
kernel mitigations

• Discuss how to automate the exploit technique

2	

Background
• OS kernels are written in

low-level languages C/C++
•  Linux: C
•  Windows: C and C++

• OS kernels are prone to
memory corruption bugs

•  Out of Bounds Access, Use-After-
Free, data race and even type
confusion (in C++ components)

•  Bugs in OS kernel are plenty
and many of them are
exploitable

3	

•  Exploit Mitigation: make
exploit harder with ignorable
cost
•  The cost to prove

exploitability is increasing
•  Exploitability: a predicate

related to each bug
•  A concrete “kernel exploit”

could serve as a proof of
exploitability

Background (cont.)
•  Automatic exploit generation systems: capable of

generating concrete exploits
•  Automatic exploit generation systems in two steps:

1.  Identifying exploit primitives
2.  Evaluating exploit primitives

•  Exploit primitive:
•  A machine state which empowers an attacker to craft an exploit

(a.k.a. programming weird machine)
•  Data flow: Writing 8 bytes anywhere, write 1 byte to adjacent heap chunk

etc.
•  Control flow: Control-flow hijacking

•  Control-flow hijacking primitive is one of the most popular
exploit primitives.

4	

Crafting a control-flow hijacking kernel exploit
•  Step 1. Adjusting parameters of system calls

and memory layout
•  [USENIX-SEC18][CCS 16]

Getting	a	control-
flow	hijacking	
primitive	

Adjusting	syscall	
parameters	and		
memory	layout	

Executing	
exploitation	
payload	

1

2

3

[USENIX-SEC14] Vasileios et al., ret2dir: Rethinking Kernel Isolation
[CCS 16] Xu et al., From Collision To Exploitation: Unleashing Use-After-
Free Vulnerabilities in Linux Kernel.
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for
Exploitation.
[P0 blog] Andrey Konovalov. Exploiting the Linux kernel via packet sockets.
[POC2016] Dong-hoon you. New reliable android kernel root exploitation
techniques.

•  Step 2. Getting a control-flow hijacking
primitive

•  [P0 blog][POC16]
•  Step 3. Payload execution

•  [USENIX-SEC 14]

5	

Key Step: from control-flow hijack to ROP payload
execution

Getting	a	
control-flow	
hijacking	
primitive	

How	to	bootstrap	a	ROP	attack?	(e.g.	Transition	S	->	S’)	

Executing	
exploitation	
payload	(e.g.	
through	ROP)	

Semantic	of	an	example		ROP	
payload	

	
commit_creds(prepare_kernel_cre
d(0))	
...	
(fixing	context	and	safely	return	to	
userspace)	
...	
execve(“/bin/sh”,NULL,NULL)	

Kernel	State	S	
gdb>	info	registers	
 rsp: x rip: 0x41424344 !
 … !
gdb> x/10gx $rsp!
X : ???????? ???????? !
X+8 : ???????? ???????? !

Kernel	State	S’	
gdb>	info	registers	
 rsp: x’ rip: 0x51525354 !
 … !
gdb> x/10gx $rsp!
X’ : 41414141 41414141 !
X’+8 : 41414141 41414141 !

6	

Challenge 1. kernel exploit mitigations

kernel	
space	

user	
space	

Control	register	

virtualization-based	hypervisor	

cr4	

corrupted	
code	ptr	shellcode	

blocked	
by	SMEP	

corrupted	
data	ptr	

crafted	
data	
object	

protected	by	
hypervisor	

physmap	

Non-
executable	
physmap	
region	

blocked	by	SMAP	

gadget	functions	
(e.g.	

call_usermodehe
lper)	

shortcuts	
patched	

native_write_
cr4()	

7	

Challenge 2. ill-suited exploit primitive

•  Lack of stack pivoting
gadget in Linux kernel

•  traditional stack pivoting
gadget blocked by SMAP
because it accesses user-
space memory

•  Intra-kernel stack pivoting
gadget sometimes does
not exist.

•  Insufficient control over
registers for invoking
kernel functions

Fake	stack	in		
User-Space	
pop	***,	ret	
…	
pop	***,	ret	
…	

blocked	
by		
SMAP		

call	rax	

xchg	eax,	esp	;	
ret	

xchg	rdi,	rsp	;	
ret	

Lack	of	
gadget	

Fake	stack	in	
kernel-space	
pop	***,	ret	
…	
pop	***,	ret	
…	

call	
copy_from_user	

smash	
current	
kernel	
stack

Insufficient	
register	
control	

copy_from_user
(dst,	src,	size)

8	

Challenge 3. exploit path pitfall
User-space

Kernel-space

Trigger	
vuln.

CFHP

kernel panic pitfall

CFHP

Trigger	
vuln.

User-space

Kernel-space

Trigger	
vuln.

CFHP

pitfall

smash	
Kern.		
Stack

exec.	
ROP	
chain	

Our	Solution:	“single-shot”	exploitation

9	

Roadmap

•  Challenges
• Our Technique
•  Evaluation with real-world Linux kernel vulnerabilities
•  Conclusion

10	

Overview of “single-shot” Exploitation

CFHP

“Blooming	gadget”

indirect	jmp/call

…

…	
indirect	
jmp/call	
…	
…	
indirect	
jmp/call

“Bridging	gadget”

…	
indirect	
jmp/call

“Auxiliary	gadget”

call		
copy_to_user	
…	
return

“Disclosure	gadget”

call		
copy_from_user	
…	
ret

“Stack	overflow	gadget”
Arbitrary	
ROP		

payload

11	

•  copy_from_user(dst, src,
size)

•  Data channel between user-
space and kernel-space

•  Destination is kernel stack
for 91% invocations of
copy_from_user() in Linux
kernel 4.15.

•  Short return
•  Check for non-zero return

value and returns -EFAULT
•  Short return path exists for

more than 99% invocations
in Linux kernel 4.15

static	long	bsg_ioctl(struct	file	*file,	unsigned	
int	cmd,	unsigned	long	arg){	
				struct	sg_io_v4	hdr;	//	destination	is	local	
variable	
				…	
				if	(copy_from_user(&hdr,	uarg,	
sizeof(hdr)))	{	
								return	-EFAULT;	//	short	return		
				}	
	

Stack smashing gadget

pagefault

userspace kernelP1

P2

n

rsp (=rdi=dst)
stack canary

rsi (=src)

unmapped
page

data successfully
migrated

data failing to
copy

ROP payload
stack canary

ROP payload

n+1

12	

•  copy_to_user(to, from,
n)

•  Copying kernel data to
user-space

•  Src is usually kernel
stack (82% in 4.15)

•  Short return path
exists

•  Problem:
•  Caller of copy_to_user

also protected by stack
canary

SYSCALL_DEFINE2(gettimeofday,	struct	
timeval	*,	tv,	struct	timezone	*,	tz){		
				struct	timeval	ktv;		
				…	
				if(copy_to_user(tv,	&ktv,	sizeof(ktv)))	{	
								return	-EFAULT;		
				}		
				…	

Bypassing stack canary: stack disclosure gadget

stack canary

userspace kernel

(mapped)
P1

P2

n (=rdx)

rsp (=rsi=src)

stack canary

pagefault

rdi

(unmapped)

data successfully
migrated

data failing to
copy13	

•  Auxiliary function
gadget

•  Protected by
stack canary

•  controllable
indirect call

•  Leaking stack
canary by
combination of

•  Auxiliary
function, and

•  Canary disclosure
gadget

Bypassing stack canary (cont.)
 push rbp
 mov rbp, rsp
 push r12
 ...
 sub rsp, 58h
 mov rax, gs:qword_28
 mov [rbp-30h], rdi
 mov rax, [rdi]
 call rax
 ...

Auxiliary function gadget
 lea rsi, [rbp-60h]
 call _copy_to_user
 test rax, rax
 jnz fail
 ...
fail:
 mov rbx, FFFFFFF2h
 jmp exit
 ...

exit:
 mov rcx,
[rbp-30h]
 xor rcx,
gs:qword_28
 jnz panic
 add rsp, 60h
 pop rbx
 ...
 ret

Canary disclosure gadget

stack right before “call rax“

local variables
rsp

rbp

rbp-0x30
rsp+0x58

return addr

stack canary

return addr

local variables

rsp

rbp

rbp-0x30
rsp+0x60

return addr

stack right after “call rax“

stack canary

14	

static	void	
aliasing_gtt_unbind_vma(struct	
i915_vma	*vma)	{	
				…	
				vma->vm->clear_range(vma->vm,	
vma>node.start,	vma->size);	
…	
}

Enhancing register control: blooming gadget

•  Linux kernel code have features
of object-oriented
programming

•  “self” passed as first parameter

•  Blooming gadget:
•  Given register rdi is under

control
•  A family of kernel functions

containing an indirect call
•  target is controllable
•  three parameters of the indirect

call are controllable

15	

Bridging gadget
•  Bridging gadget

•  Containing multiple
controllable indirect calls

•  Spawning two CFHPs and
combining canary leak and
stack smash into a single
shot.

Layout	of	struct	“regmap”

loc
k

unloc
k

A B .physmap	page		
under	our	control

map	

auxiliary	&	
disclosure	
gadget

Stack	smash	
gadget

void	regcache_mark_dirty(struct	
regmap	*map){	
			map->lock(map->lock_arg);//	the	1st	
control-flow	hijack		
			map->cache_dirty=true;	
			map->no_sync_defaults=true;	
			map->unlock(map->lock_arg);//	the	
2nd	control-flow	hijack	
}

16	

Implementation
•  Collecting candidate gadgets with static

analysis
•  Built on IDA-Pro SDK 6.95

•  Taking Exploit chain identification as a tree
search problem

•  28 workers to search different sub-trees
concurrently

•  Stitching gadgets with symbolic execution
•  Built on angr
•  Initialization: QEMU snapshot
•  Pruning: checking constraints satisfiability at key

locations
•  State explosion mitigations:

•  Giving up after 20 steps for each stage
•  Entering a loop for less than 5 times.

CFHP

…

…

…

…

…

Blooming	

Bridging

Auxiliary

Canary	
disclosure

Stack	
overflow
17	

Evaluation
•  Test Cases:

•  16 CVEs + 3 CTF challenges

•  Comparing with previous
exploit generation/
hardening techniques

•  FUZE: relying on an exploit
technique named “CR4
hijacking”

•  Not bypassing VMM-based
hypervisor

•  Not bypassing exploitation
pitfalls

•  Q : relying on stack-pivoting
gadget which is not
available in the kernel
binary image

18	

Evaluation (cont.)

•  Finding exploit
chain in 50 wall
clock minutes

• Generating tens
of thousands of
exploit chains

• Hard to defeat
because the
gadget could not
be easily
removed.

19	

Conclusions

•  New technique: Single-shot exploitation is an effective kernel
exploitation technique

•  Reduction: From “ROP is Turing Complete” to “control-flow hijacking is
Turing Complete”

•  New tool: Kepler is able to convert Linux kernel ROP
bootstrapping task into a bounded tree-search problem and
facilitate evaluation of control-flow hijacking primitive

•  Source: https://github.com/ww9210/ kepler-cfhp

•  Suggestion: Kernel CFI should be deployed because other
mitigations hardly stop exploitation

20	

Thank you.

21	

kernel state
RIP: 0xdeadbeef RSP: x
 x : ?????????? ??????????
x + 8: ?????????? ??????????
…

KEPLER

Gadget Stitching

Input

CFHP
Constructing
Kernel Stack-

Overflow

Candidate Gadgets

“single-shot”
exploit

Arbitrary ROP
payload

Enhancing CFHP

Performing Static
analysis

Kernel Binary
Image

kernel state’
RIP: 0xdeadbeef RSP: x’

 x’ : 0x41414141 0x41414141
x’ + 8: 0x41414141 0x41414141
…

Bootstrapping
any ROP chain

Q&A

22	

