ProFuzzer: On-the-fly Input Type Probing for
Better Zero-day Vulnerability Detection

Wei You, Xuegiang Wang, Shiging Ma, Jianjun Huang,
Xiangyu Zhang, XiaoFeng Wang, Bin Liang

Email: {you58, ma229, xyzhang}@purdue.edu, {xw48, xw7}@indiana.edu,
{hjj, liangb}@ruc.edu.cn

PURDUE INDIANA

UNIVERSITY

\\jERS[n’
AT \
\g %\ \
2\ (((5
A
Dk %ﬁ

RENMIN UNIVERSITY OF CHINA

Mutation-based Fuzzing

e Starts from a set of valid input instances as seeds
* Continuously modify to explore various execution paths

Store mutated input if new coverage is hit

8= I\ ﬁ A - Hit New
—> —> AN L Coverage
Selection Mutation Execution - ?

Seed Corpus Seed Input Mutated Input Code Coverage

Effectiveness of AFL

#Mutations | Effective for coverage improvement

1.5x108

1.0x108

5.0x10°

Byte

0
0x00

HHHNHH

||||I|HH

| Ineffective for coverage improvement

il

0x3d

Observation 1: More than 60% of
the mutations are performed on
the input bytes that are ineffective.

More than 1.5 million mutations
are performed on the 31st byte
(Ox1F), which is ineffective for
coverage improvement.

Effectiveness of AFL

Effective Mutation Ratio Observation 2: effective mutation
0.0025 1 ratio (EMR) drops very quickly.
0.0023

0.0020-

0.0018+

0.0015- # mutations that increase coverage
0.0013 EMR =

0.0010+ # total mutations

0.0008-

0.0005 -

Hours ; : S Code coverage is hardly improved

after 8 hours.

Existing Works

* Improve the breadth

* Seed selection: Rebert et al. [SEC 14], Moonshine [SEC 18]
* Seed prioritization: AFLFast [CCS 16], Steelix [FSE 17], FairFuzz [ASE 18]

* Improve the depth
e Taint analysis: BuzzFuzz [ICSE 09], TaintScope [S&P 12], VUzzer [NDSS 17]
e Symbolic execution: Driller [NDSS 16], QSYM [SEC 18], T-Fuzz [S&P 18]
* Gradient-based search: Angora [S&P 18], NEUZZ [S&P 19]

ProFuzzer

* Basic idea: on-the-fly input structure understanding & utilizing

* Probe input types in a light-weight manner
* Per-byte mutation observation
* Field identification
* Type discovery

* Leverage type information to guide further mutations
* Explore valid values for better code coverage
* Exploit specific values that may lead to a vulnerability

* Application-agnostic v.s. application-specific types
* Application-agnostic: raw data, size, etc.
» Application-specific: ip address, pdf data structure, etc.

Fuzzing-related Input Types

Assertion
Raw Data

header->biBitCount = get2Bytes (IN);

Enumeration

iv. Offset
v. Size
vi. Loop Coun

switch (header->biBitCount) {

case (x08: bmp8toimage (pData, ...); break;
case 0Ox10: bmplé6toimage (pData, .); break;
case (x18: bmp24toimage (pData, ...); break;
case (x20: bmp32toimage (pData, .); break;

default: exit_error();

header->bfOffBits = get4Bytes(IN);

Iseek (IN, header->btfOrffBits, SEEK_SET);
if (fread(pData, ..., stride * header->biHeight, IN)
= (stride x height)) exit_error();

Probing: observing per-byte mutation effect

o1 2 3 4567 89 abocdeHf
00000000h : .4D 3A 00 00 00 00 00 00 00 36 00 00 00 28 00
00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00
00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00

00000030h: 00 00 00 00 00 0@ FF FF FF 00 FF FF FF 00

® @ execution profiles
N 0—0 . [0x00 0x01 OXFF]
®>©:© :@: dif K@\
A 8 0 0 Q
©\ x® ©\ x® ®—0 @’ ‘@
© © @—’© @ """ ¥

original mutated trace @
execution trace execution trace difference

Field Identification: group consecutive bytes

© 1 2 3 45 6 7 8 9 ab cdef

I l4Dn3A 00 00 00 00 00 00 00 36 00 00 00 28 00

i
I
I
LoLL

00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00

00000000h :

00000020h: 00 00 04 00 00 00 AF 00 00 00 4F 00 00 00 00 00

00000030h: 00 00 00 00 00 0@ FF FF FF 00 FF FF FF 00

execution profile of byte 0x00 : execution profile of byte Ox01 : execution profile of byte 0x02
[Ox0O0 Ox01 ... OxFF] : [Ox00 Ox01 ... OxFF] [OxO0 Ox01 ... OxFF]

@ @ @ A‘@\ @ @ @ y©\ K@ @\ A‘@

@—> @ @ ©‘© ,G) @_> @ @ @\ ’G) ©\ K© @\

Field Identification: group consecutive bytes

* Group bytes at offsets from i to j together as a field

if they share the same invalid

executiOn pI’Oﬁle (l e, e ual 060606061 E_4_2_4_DE 3A 00 00 00 00 00 00 00 36 00 00 00 28 00

minimum Similort

0 1

header->bfType = get2Bytes (IN);

if (header->bfType != (0x4d42) exit_error();

2 34567 89 abocde-ef

00000010h: 00 00 01 00 00 00 02 00 00 00 01 00 18 00 00 00
00000020h: 00 00 04 00 00 00 4F 00 00 00 4F 00 00 00 00 00
00000030h: 00 00 00 00 00 00 FF FF FF @0 FF FF FF 00

i 1.000 0 1.000

0.8 0.8

00,65 DL Bttt Rttt 006529 e
minimal 02 4 e 1
similarity 0x00 Oxd?2 OXFF 0x00 0x4D OxFF

profile similarity graph of byte 0x00

profile similarity graph of byte 0x01

Type Inference: determine type of each field

* Enumeration * Size
If there exists a valid value set VS, such that: If there exists a bound value bv, such that:
values in VS correspond to large similarity, values within bv correspond to large similarity,
other values correspond to small similarity. values beyond by correspond to small similarity.

o
”
00%34- T 092532- s
00.2068. e 003364_ _ ___________________
00055 OXFF 0x00 OXFF

profile similarity graph of the 28th byte (0x1C) profile similarity graph of the 22nd byte (0x16)

Type Inference: determine type of each field

@ 1 2 3 456 7 8 9 ab cdef

00000000h: |42 4D|:3A 00 00 00:00 00 00 00:36 00 00 00 PXYLY

00000010h: [N s] 01 00 00 @Oi§02 00 00 0001 00 NENI 00 00

Assertion|: Raw Data [ETTIICIStN] IERTMEINN [0ffset| Size

By matching execution profiles with different feature patterns,
the type of each input field is identified.

Type-guided Exploration (for better coverage)

@ 1 2 3 456 7 8 9 ab cdef

00000000h: |42 4D|:3A 00 00 00 00 00 00 0036 00 00 00 PLEY

________________ e e wme,

Assertion] Raw Dats ——

Limit mutation to all the valid values of the field type.

For size field: increase its value by X and appends X bytes data

Type-guided Exploitation (for bug detection)

@ 1 2 3 456 7 8 9 ab cdef

00000000h: |42 4D|:3A 00 00 00: @0 00 0@ 00:(36 00 00 00 PENY

Assertion| RaWData Offset || Size|

Exploit a set of special values that may lead to potential vulnerabilities.

location_end - location_current = 0x27

Evaluation

* Generality of Assumptions

* Input Size and Path Coverage

* Probing Accuracy

* Finding Zero-day Vulnerabilities

* Evaluation on Standard Benchmarks
* Exposing Known Vulnerabilities

* Performance

Probing Accuracy

ProFuzzer afl-analyze
Product |Actual Inferred Wrong | Missed Inferred Wrong | Missed
(FP*) | (FN*¥) (FP*) | (FN*%)
exiv2 20 21 (3(14%)| 0 (0%) | 16 |11 (69%)|15 (75%)
graphicsmagick | 17 19 | 105%)|2(12%)] 7 4 (57%) |14 (82%)
libtiff 20 23 1209%) |3 (15%)| 17 |9 (53%) |12 (60%)
openjpeg 17 17 1 (6%) | 0 (0%) 9 4 (44%) 112 (711%)
libav 14 14 1 1(7%) |0 (0%) 4 2 (50%) |12 (86%)
libming 14 14 10(0%) |0 (0%) 3 1 (33%) |12 (86%)
mupdf 52 53 1204%) | 1Q2%)| 34 [13(38%)|31 (60%)
podofo J2 3 [1Q2%)|2@4%) | 25 |11 (44%)|38 (73%)
Irzip 39 39 100%)|5(13%)| 30 |310%) |12 (31%)
zziplib 36 36 [206%) |00%) | 14 |4(29%) |26 (72%)

* ProFuzzer: 5.3% FP, 4.6% FN

e AFL-analysis: 42.7% FP, 69.6% FN

Finding Zero-day Vulnerabilities

Category Product SLOC Bugs | CVEs | Fixes

exiv2 131,993 5 5 5

Image graphicsmagick 299,186 2 1 1
libtiff 82,484 8 1 1

openjpeg 164,284 3 3 3

. . libav 703,369 3 2 0
Audio & Video libming 747)))
mupdf 102,824 1 1 1

PDF podofo 78,195 6 6 3
Compression lr.zip 19,098 3 3 3
zziplib 12,898 8 6 8
Total 10 1,667,078 42 30 27

Evaluation on Standard Benchmarks

Program Location Reaching Time (hours)
ProFuzzer | AFL | AFLFast | Driller | VUzzer
guetzli | output_image.cc:398 0.83 .64 | 237 373 | 8.60
json | fuzzer-..._json.cpp:50 0.05 002 0.04 0.12 | 426
lems cmsintrp.c:642 0.67 655 | 3.83 531 | 11.97
libarchive | archive ... warc.c:537 1.34 788 | 6.92 6.74 | 1442
libjpeg jdmarker.c:659 11.68§ | T/O| T/O T/IO | T/O
png.c:1035 1.84 337 233 427 | 6.06
libpng pngread.c:757 0.03 0.01 | 001 002 | 0.17
pngrutil.c:1393 7.63 TIO | TIO T/IO | T/O
codebook.c:479 T/O T/O | T/O T/O T/O
vorbis codebook.c:407 T/O T/O | T/O T/O T/O
res(.c:690 176 | T/IO | T/O T/O | T/O

* ProFuzzer reaches more target locations than other fuzzers
* ProFuzzeris 2.26 to 8.85 times faster than other fuzzers

Performance

1000{ —e— AFLFast \.\ i
— ProFuzzer 00051 \ = AFLFast
8001 -+~ Driller X . Pquuzzer
-+ VUzzer 0.004 ‘\\ i SlrJlIIer
LN = zzer
600 N e
0.003 g
400- =
0.002: e
2001
0.001:
0.
0 5 10 15 20 25 0 5 10 15 20 25
Comparison on Path Coverage Comparison on Effective Mutation Ratio

* ProFuzzer archives 27% ~ 227% more path coverage than other fuzzers
* ProFuzzer spends 53% ~ 79% less time to reach the same coverage

* ProFuzzer keeps relatively high effective mutation ratio

Closely Related Works

* Input structure reverse engineering

e Tupni [CCS 08]: identify input bytes relations via symbolic execution
 Reward [NDSS 10]: propagates program type through syscalls and instructions
* Howard [NDSS 11]: analyze memory access patterns during program execution

* Field-aware fuzzing

» Steelix [FSE 17] infers magic value bytes by intercepting string comparisons
e TIFF [ACSAC 18] infers program type (e.g., int, string) via taint analysis
* Angora [S&P 18] infers shape and size of input bytes via taint analysis

e Difference:

* ProFuzzer adopts lightweight mechanism instead of heavyweight analysis
* ProFuzzer infers application-agnostic and fuzzing-related types

Conclusion

* Leverage on-the-fly type learning to improve fuzzing

* Probe input fields and types by observing the fuzzing process
* Explore valid values for better code coverage
* Exploit the values that could lead to an vulnerability

e Results:

* Better performance on code coverage and vulnerability exposure
* 42 zero-day vulnerabilities, 30 of which are assigned CVEs

Thank youl!

Q&A

