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Automatic Software Vulnerability Detection

Automatic detection of software vulnerabilities is an important 
research problem

Static vulnerability detection tools and studies 
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Drawbacks of Existing Approaches

First, imposing intense labor of human experts

 Define features

Second, incurring high false negative rates

Two most recent vulnerability detection systems

• VUDDY (SP’17): false negative rate = 18.2% for Apache HTTPD 2.4.23

• VulPecker (ACSAC’16): false negative rate = 38% with respect to 455 

vulnerability samples
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Research Problem

Given the source code of a target program, how can we determine 

whether or not the target program is vulnerable and if so, where 

are the vulnerabilities? 

4

Without asking human experts to manually define features

Without incurring a high false negative rate or false positive rate 



Our Main Contribution

Vulnerability Deep Pecker (VulDeePecker): 

A deep learning-based system for automatically 

detecting vulnerabilities in programs (source code)
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Guiding Principles: three questions
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Q1: How to represent software programs for deep learning-based 
vulnerability detection?

Q2: What is the appropriate granularity for deep learning-based 
vulnerability detection?

Q3: How to select a specific neural network for vulnerability 
detection?



Guiding Principles
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Q1: How to represent software programs for deep learning-based 
vulnerability detection?

Preserve the semantic relationships between the programs’
elements (e.g., data-flow and control-flow information).



Guiding Principles
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Q2: What is the appropriate granularity for deep learning-based 
vulnerability detection?

Represented at a finer granularity than treating a program or a
function as a unit.



Guiding Principles

11

Q3: How to select a specific neural network for vulnerability 
detection?

Neural networks that can cope with contexts may be suitable for
vulnerability detection.
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Overview of VulDeePecker
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The Concept of Code Gadget

 A unit for vulnerability detection

 A number of program statements that are semantically 

related to each other in terms of data dependency or control 

dependency

 Example: vulnerabilities related to library/API function calls



Step I: Generating Code Gadgets
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A code gadget 
corresponding to strcpy()



Each code gadget is labeled as “1” (i.e., vulnerable) or “0” (i.e., not 
vulnerable). 
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According to the 
diff files

According to the 
vulnerable statements

Step II: Generating Ground Truth Labels



Step III: Transforming Code Gadgets into Vectors

 Transform code gadgets into their symbolic representations

 Encode the symbolic representations into vectors 
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Step IV: Training the BLSTM Neural Network

 Training process for learning the BLSTM neural network is standard
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Steps V-VII: Detection Phase
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Research Questions
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RQ1: Can VulDeePecker deal with multiple types of vulnerabilities 
at the same time? 

RQ2: Can human intelligence (other than defining features) 
improve the effectiveness of VulDeePecker?

RQ3: How effective is VulDeePecker when compared with other 
approaches? 

 Metrics for evaluation

False positive rate (FPR), false negative rate (FNR), 
recall, precision, F-measure



Preparing Input to VulDeePecker

 Programs collection for answering the RQs 

Two sources of vulnerability data

• 19 C/C++ open source products which vulnerabilities are described in 
NVD, and C/C++ test cases in SARD

Collect 520 open source software program files and 8,122 test cases 
for the buffer error vulnerability (i.e., CWE-119) , and 320 open source 
software program files and 1,729 test cases for the resource 
management error vulnerability (i.e., CWE-399) 

 Training programs vs. target programs

Randomly choose 80% of the programs we collect as training programs 
and the rest 20% as target programs
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Learning BLSTM Neural Networks

 Datasets for answering the RQs

Code Gadget Database (CGD): 61,638 code gadgets

Six datasets of CGD
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BE:  Buffer error vulnerabilities
RM: Resource management vulnerabilities
HY:  Hybrid of the above two types of 

vulnerabilities 

ALL: All library/API function calls
SEL:  Manually selected     

library/API function calls



RQ1

Insight:  VulDeePecker can detect multiple types of vulnerabilities, 
but the effectiveness is sensitive to the amount of data (which is 
common to deep learning).
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RM:  16 function calls related to vulnerabilities
BE: 124 function calls related to vulnerabilities

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities 
at the same time? 



 Insight: Human expertise can be used to select function calls to 
improve the effectiveness of VulDeePecker.
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RQ2: Can human intelligence (other than defining features) 
improve the effectiveness of VulDeePecker?

RQ2



Insight: A deep learning-
based vulnerability 
detection system can be 
more effective by taking 
advantage of the data-flow 
information.
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RQ3: VulDeePecker vs. Static Analysis Tools

RQ3: How effective is VulDeePecker when compared with other approaches? 



Insight: VulDeePecker is 
more effective than code 
similarity-based approaches
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RQ3: VulDeePecker vs. Code Similarity-Based 

Approaches

RQ3: How effective is VulDeePecker when compared with other approaches? 



VulDeePecker detected 4 vulnerabilities, which were not reported in 

the NVD, but were “silently” patched by the vendors.

These vulnerabilities are missed by most of the other vulnerability 

detection systems mentioned above
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Using VulDeePecker in Practice
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Limitations and Open Problems

Present design

Assuming source code is available

Only dealing with C/C++ programs

Only dealing with vulnerabilities related to library/API function calls

Only accommodating data-flow information, but not control-flow information

Using some heuristics

Present implementation 

 Limit to the BLSTM neural network

Present evaluation 

 The dataset only contains vulnerabilities about buffer errors and resource 
management errors
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Conclusion

We initiate the study of using deep learning for vulnerability 

detection, and discuss some preliminary guiding principles

We present VulDeePecker, and evaluate it from 3 

perspectives

We present the first dataset for evaluating deep learning-

based vulnerability detection systems

 https://github.com/CGCL-codes/VulDeePecker
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Takeaways

 The first deep learning-based vulnerability detection system 

using a finer-granularity unit code gadget 

Guiding principles for deep learning-based vulnerability 

detection

The first dataset for evaluating deep learning-based 

vulnerability detection systems
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lizhen_hust@hust.edu.cn

Data available at:

https://github.com/CGCL-codes/VulDeePecker

Thanks!


