
Zhen Li1, Deqing Zou1, Shouhuai Xu2, Xinyu Ou1, Hai Jin1, Sujuan

Wang1, Zhijun Deng1 , Yuyi Zhong1

1Huazhong University of Science and Technology (HUST), Wuhan, China

2University of Texas at San Antonio (UTSA), San Antonio, USA

Automatic Software Vulnerability Detection

Automatic detection of software vulnerabilities is an important
research problem

Static vulnerability detection tools and studies

2

RATS

VUDDY

(SP’17)

ReDeBug …VulPecker

(ACSAC’16)

Drawbacks of Existing Approaches

First, imposing intense labor of human experts

 Define features

Second, incurring high false negative rates

Two most recent vulnerability detection systems

• VUDDY (SP’17): false negative rate = 18.2% for Apache HTTPD 2.4.23

• VulPecker (ACSAC’16): false negative rate = 38% with respect to 455

vulnerability samples

3

Research Problem

Given the source code of a target program, how can we determine

whether or not the target program is vulnerable and if so, where

are the vulnerabilities?

4

Without asking human experts to manually define features

Without incurring a high false negative rate or false positive rate

Our Main Contribution

Vulnerability Deep Pecker (VulDeePecker):

A deep learning-based system for automatically

detecting vulnerabilities in programs (source code)

5

Outline

 Guiding Principles

 Design of VulDeePecker

 Experiments and Results

 Limitations

 Conclusion

6

Outline

 Guiding Principles

 Design of VulDeePecker

 Experiments and Results

 Limitations

 Conclusion

7

Guiding Principles: three questions

8

Q1: How to represent software programs for deep learning-based
vulnerability detection?

Q2: What is the appropriate granularity for deep learning-based
vulnerability detection?

Q3: How to select a specific neural network for vulnerability
detection?

Guiding Principles

9

Q1: How to represent software programs for deep learning-based
vulnerability detection?

Preserve the semantic relationships between the programs’
elements (e.g., data-flow and control-flow information).

Guiding Principles

10

Q2: What is the appropriate granularity for deep learning-based
vulnerability detection?

Represented at a finer granularity than treating a program or a
function as a unit.

Guiding Principles

11

Q3: How to select a specific neural network for vulnerability
detection?

Neural networks that can cope with contexts may be suitable for
vulnerability detection.

CNN

DBN

DNN

…

Traditional RNN

LSTM

GRU
…

RNN

Unidirectional LSTM

Bidirectional LSTM

LSTM

RNN This paper

Outline

 Guiding Principles

 Design of VulDeePecker

 Experiments and Results

 Limitations

 Conclusion

12

Overview of VulDeePecker

13

14

The Concept of Code Gadget

 A unit for vulnerability detection

 A number of program statements that are semantically

related to each other in terms of data dependency or control

dependency

 Example: vulnerabilities related to library/API function calls

Step I: Generating Code Gadgets

15

A code gadget
corresponding to strcpy()

Each code gadget is labeled as “1” (i.e., vulnerable) or “0” (i.e., not
vulnerable).

16

According to the
diff files

According to the
vulnerable statements

Step II: Generating Ground Truth Labels

Step III: Transforming Code Gadgets into Vectors

 Transform code gadgets into their symbolic representations

 Encode the symbolic representations into vectors

17

7 tokens

Step IV: Training the BLSTM Neural Network

 Training process for learning the BLSTM neural network is standard

18

Steps V-VII: Detection Phase

19

Outline

 Guiding Principles

 Design of VulDeePecker

 Experiments and Results

 Limitations

 Conclusion

20

Research Questions

21

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities
at the same time?

RQ2: Can human intelligence (other than defining features)
improve the effectiveness of VulDeePecker?

RQ3: How effective is VulDeePecker when compared with other
approaches?

 Metrics for evaluation

False positive rate (FPR), false negative rate (FNR),
recall, precision, F-measure

Preparing Input to VulDeePecker

 Programs collection for answering the RQs

Two sources of vulnerability data

• 19 C/C++ open source products which vulnerabilities are described in
NVD, and C/C++ test cases in SARD

Collect 520 open source software program files and 8,122 test cases
for the buffer error vulnerability (i.e., CWE-119) , and 320 open source
software program files and 1,729 test cases for the resource
management error vulnerability (i.e., CWE-399)

 Training programs vs. target programs

Randomly choose 80% of the programs we collect as training programs
and the rest 20% as target programs

22

Learning BLSTM Neural Networks

 Datasets for answering the RQs

Code Gadget Database (CGD): 61,638 code gadgets

Six datasets of CGD

23

BE: Buffer error vulnerabilities
RM: Resource management vulnerabilities
HY: Hybrid of the above two types of

vulnerabilities

ALL: All library/API function calls
SEL: Manually selected

library/API function calls

RQ1

Insight: VulDeePecker can detect multiple types of vulnerabilities,
but the effectiveness is sensitive to the amount of data (which is
common to deep learning).

24

RM: 16 function calls related to vulnerabilities
BE: 124 function calls related to vulnerabilities

RQ1: Can VulDeePecker deal with multiple types of vulnerabilities
at the same time?

 Insight: Human expertise can be used to select function calls to
improve the effectiveness of VulDeePecker.

25

RQ2: Can human intelligence (other than defining features)
improve the effectiveness of VulDeePecker?

RQ2

Insight: A deep learning-
based vulnerability
detection system can be
more effective by taking
advantage of the data-flow
information.

26

RQ3: VulDeePecker vs. Static Analysis Tools

RQ3: How effective is VulDeePecker when compared with other approaches?

Insight: VulDeePecker is
more effective than code
similarity-based approaches

27

RQ3: VulDeePecker vs. Code Similarity-Based

Approaches

RQ3: How effective is VulDeePecker when compared with other approaches?

VulDeePecker detected 4 vulnerabilities, which were not reported in

the NVD, but were “silently” patched by the vendors.

These vulnerabilities are missed by most of the other vulnerability

detection systems mentioned above

28

Using VulDeePecker in Practice

Outline

 Guiding Principles

 Design of VulDeePecker

 Experiments and Results

 Limitations

 Conclusion

29

Limitations and Open Problems

Present design

Assuming source code is available

Only dealing with C/C++ programs

Only dealing with vulnerabilities related to library/API function calls

Only accommodating data-flow information, but not control-flow information

Using some heuristics

Present implementation

 Limit to the BLSTM neural network

Present evaluation

 The dataset only contains vulnerabilities about buffer errors and resource
management errors

30

Outline

 Guiding Principles

 Design of VulDeePecker

 Experiments and Results

 Limitations

 Conclusion

31

Conclusion

We initiate the study of using deep learning for vulnerability

detection, and discuss some preliminary guiding principles

We present VulDeePecker, and evaluate it from 3

perspectives

We present the first dataset for evaluating deep learning-

based vulnerability detection systems

 https://github.com/CGCL-codes/VulDeePecker

32

Takeaways

 The first deep learning-based vulnerability detection system

using a finer-granularity unit code gadget

Guiding principles for deep learning-based vulnerability

detection

The first dataset for evaluating deep learning-based

vulnerability detection systems

33

lizhen_hust@hust.edu.cn

Data available at:

https://github.com/CGCL-codes/VulDeePecker

Thanks!

