HoMonit: Monitoring Smart Home Apps from Encrypted Traffic

Wei Zhang¹, Yan Meng¹, Yugeng Liu¹, Xiaokuan Zhang², Yinqian Zhang², and Haojin Zhu¹

¹Shanghai Jiao Tong University ²The Ohio State University

January, 2019

• Smart home, a concept of Internet of Things (IoT)

Internet of Things

• Smart home, a concept of Internet of Things (IoT)

Smart Home

• **Smart home**, a concept of *Internet of Things* (IoT)

3

• Rapid growth of **smart home** market

• Rapid growth of smart home market

Market Revenue

- \$18,877 million in 2018
- Annual growth rate: 14.8%

• Rapid growth of smart home market

Market Revenue

- \$18,877 million in 2018
- Annual growth rate: 14.8%

• Rapid growth of smart home market

• Smart devices are produced by different vendors

• Smart devices are produced by different vendors

• Smart devices are produced by different vendors

• Prominent examples of smart home platforms

• Prominent examples of smart home platforms

Platform to study in our work

• Prominent examples of smart home platforms

Platform to study in our work

A popular platform promoted by Samsung

Support 133 device types and 181 SmartApps in the official GitHub repo

At least 50 thousand active families (2017)

• SmartThings architecture

Local Smart Home

Smart Devices

- Key building blocks of the entire infrastructure
- Connect to the hub with communication protocols

SmartThings Hub

- Mediate the communication with all connected devices
- Serve as the gateway to the SmartThings cloud

• SmartThings architecture

Popular Protocols for Smart Home

💋 zigbee

Protocols to Study in Our Work ZigBee and Z-Wave

- Two dominant wireless protocols in
 - SmartThings device market
- Contribute to about 79.7% of device

market share

• SmartThings architecture

- An 802.15.4-based specification for personal area networks
- Low power consumption with 10-100 meters transmission distance
- ZigBee supports the 128-bit AES encryption
- ZigBee stack is loosely based on the OSI 7-layer model

P.nbr.	Time (us)	Length	Frame control field					Sequence	Dest.	Dest.	Source	MAC payload
RX	+998564	Lengui	Type	Sec I	Pnd A	ck.req	PAN_compr	number	PAN	Address	Address	48 02 19 16 00 00 1E D3 28 E0 8C 22 00 01 00 D5 79
19	=4484586	45	DATA	0	0	1	1	0x6F	0x78F9	0x1619	0x0000	A6 A8 52 D0 00 ED 2D A6 12 A3 63 B3 E4 82 38 72 37

PHY & MAC layers → multiple fields → side channel exploitation

- A popular low-power consumption communication protocol having frame structure similar with ZigBee
- Follow ITU-T G.9959 recommendation
- In US, Z-Wave devices are specified to work on two frequency bands (908.4MHz & 916MHz)
- Support strong encryption and authentication via Z-Wave S2 security solution, which implements 128-bit AES encryption

• There are four dominant components in the system

• Existing works mainly fall in to four categories

IoT Devices

- Local adversary due to device distrusting Notra et al. (CNS 2014), Kim et al. (HotSec 2014)
- Unauthenticated control signal attack
 Smart Locks, (AsiaCCS 2016), Bagci et al. (ACSAC 2015)
- Implementation flaws

Privacy Mediators, (HotMobile 2016)

Protocol

• Existing works mainly fall in to four categories

Can we find approach to
 Loc protect devices with the semantics of device handlers

- Una the in smart home context?
 Smart Loc (ACSAC 2015)
- Implementation s
 Privacy Mediat (HotMobile 2016)

Protocol

• Existing works mainly fall in to four categories

• Existing works mainly fall in to four categories

Protocol and Wireless Traffic

- Security risks in ZigBee and Z-Wave implementations Zillner et al. (Black Hat 2015), Fouladi et al. (Black Hat 2013)
- Wireless signal based analysis to infer sensitive information WiHear (TMC 2016), WindTalker (CCS 2016)
- Wireless packet based analysis (timing, size, sequence...)
 Wright et al. (S&P 2008), Chen et al. (S&P 2010)

Protocol

• Existing works mainly fall in to four categories

Can we exploit this side

- Security channel to implement on the point on the point of the po
- Wirele signal base platforms? In a sensitive information WiHear (TM 2016) Vind Talker (2016)
- Wireless packet b anarysis (timing, size, sequence...) Wright et al. (S&P 2008), Chen et al. (S&P 2010)

Protocol

• Existing works mainly fall in to four categories

• Existing works mainly fall in to four categories

Platform (SmartThings) - Attack Security analysis of emerging smart home applications Fernandes *et al.* (S&P 2016)

- Identify several design vulnerabilities of SmartThings
 - Over-privileged accesses
 - Event spoofing

Protocol

• Existing works mainly fall in to four categories

Platform (SmartThings) - Attack

- Over-privileged accesses
 - Illegally obtaining accesses to command / all the capabilities of the devices
- Event spoofing
 - A malicious SmartApp with the knowledge of the hub and device identifiers can spoof an arbitrary event

• Existing works mainly fall in to four categories

Platform (SmartThings) - Defense

- Apply information flow control to confine sensitive data Flowfence (USENIX Security 2016)
- Context-based permission system
 ContexIoT (NDSS 2017)
- Enforce context-aware authorization by app analysis
 SmartAuth (USENIX Security 2017)

Protocol

• Existing works mainly fall in to four categories

- Can we find a way to resist A these attacks without Platform modification or
- Context-based app patching?
 Contexto
- Enforce conte: are autorization by app analysis
 SmartAuth (USENIX Security 2017)

Protocol

HoMonit : a novel platform-independent anomaly detection system for monitoring smart home apps from encrypted wireless traffic.

HoMonit : a novel platform-independent anomaly detection system for monitoring smart home apps from encrypted wireless traffic.

Contributions

Novel techniques

App activities inference using DFA extraction and wireless side-channel

New systems

System design, implementation and evaluation

Open-source dataset

A dataset of 60 misbehaving SmartApps to benefit research community

HoMonit Schema

HoMonit Schema

Feature

- Platform independent
- SmartApp formulation
- Static code analysis
- NLP analysis
- Encrypted wireless traffic side channel analysis
- Misbehavior detection

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

51

Test

Home

Set for specific mode(s)

SmartApp

Set for specific mode(s) Home

SmartApp

Set for specific mode(s) Home

SmartApp

Feasibility

Wireless Side Channel

- ZigBee/Z-Wave wireless traffic can be passively eavesdropped
- Device behavior is tightly corresponding to a packet sequence

Feasibility

Wireless Side Channel

App Workflow Inference

- ZigBee/Z-Wave wireless traffic can be passively eavesdropped
- Device behavior is tightly corresponding to a packet sequence
- SmartThings offers a large scale of open/closed source SmartApps
- SmartApps usually control a set of device with certain logic
- We extracting the working logic of SmartApps as DFAs
- The behavior of the SmartApps can be inferred from the DFA transitions: normal behavior sequences are always accepted by the DFA, whereas abnormal ones are not

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

We consider attackers capable of exploiting the vulnerabilities of a benign SmartApp to perform tasks (*i.e.*, *misbehaviors*).

Assumption

Over-privilege accesses

The original SmartApps from SmartThings Marketplace and SmartThings Public GitHub Repository are assumed to be trusted and can be used to extract the benign DFA

Challenges

How to automatically extract the control logic (i.e., DFA)

of both open-source and closed-source SmartApps?

Challenges

How to automatically extract the control logic (i.e., DFA) of both open-source and closed-source SmartApps?

How to automatically capture wireless traffic (i.e., ZigBee and Z-Wave) and conduct side-channel inference to detect SmartApp misbehaviors?

Challenges

How to automatically extract the control logic (i.e., DFA) of both open-source and closed-source SmartApps?

How to automatically capture wireless traffic (i.e., ZigBee and Z-Wave) and conduct side-channel inference to detect SmartApp misbehaviors?

How to implement and evaluate detection accuracy in a real-world smart home deployment?

System Workflow

System Workflow

System Workflow

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

definition (name: "Smart Light", namespace: "com.example", author: "example", category: "Convenience", description: "Turn light on when motion detected." preferences { section("When there is movement...") { input "themotion", "capability.motionSensor", title: "Select a motion sensor" section("Turn on a light...") { input "theswitch", "capability.switch", title: "Select a light" **def** installed() { subscribe(themotion, "motion.active", motionHandler) } **def** updated() { unsubscribe() subscribe(themotion, "motion.active", motionHandler) **def** motionHandler(evt) { theswitch.on()

definition(

name: "Smart Light", namespace: "com.example", author: "example", category: "Convenience", description: "Turn light on when motion detected."

preferences {
 section("When there is movement...") {

Take a SmartApp *Smart Light* as example It turns light on when motion detected

Therefore, it automates two devices

```
def updated() {
    unsubscribe()
    subscribe(themotion, "motion.active", motionHandler)
}
def motionHandler(evt) {
    theswitch.on()
}
```

definition (

name: "Smart Light", namespace: "com.example", author: "example", category: "Convenience", description: "Turn light on when motion detected."

We achieve DFA building in two steps:

Source code \rightarrow AST \rightarrow DFA

- We use AstBuilder to convert code into AST during Groovy compilation phase
- 2. The translation from AST to DFA is completed based on *SmartApp characteristics*

```
def motionHandler(evt) {
   theswitch.on()
}
```

```
definition (
  name: "Smart Light", namespace: "com.example",
  author: "example", category: "Convenience",
  description: "Turn light on when motion detected."
preferences {
  section("When there is movement...") {
    input "themotion", "capability.motionSensor",
          title: "Select a motion sensor"
  section("Turn on a light...") {
    input "theswitch", "capability.switch",
          title: "Select a light"
def installed() {
  subscribe(themotion, "motion.active", motionHandler)
def updated() {
 unsubscribe()
  subscribe(themotion, "motion.active", motionHandler)
def motionHandler(evt) {
  theswitch.on()
```

definition(

preferences {

```
name: "Smart Light", namespace: "com.example",
author: "example", category: "Convenience",
description: "Turn light on when motion detected."
```

Preferences block statement

Extract the capabilities requested by DFA

Subscribe method

Further determine the specific symbols of DFA

```
def motionHandler(evt) {
   theswitch.on()
}
```

```
definition (
  name: "Smart Light", namespace: "com.example",
  author: "example", category: "Convenience",
  description: "Turn light on when motion detected."
preferences {
  section("When there is movement...") {
    input "themotion", "capability.motionSensor",
          title: "Select a motion sensor"
  section("Turn on a light...") {
    input "theswitch", "capability.switch",
          title: "Select a light"
def installed() {
  subscribe(themotion, "motion.active", motionHandler)
def updated() {
 unsubscribe()
  subscribe(themotion, "motion.active", motionHandler)
def motionHandler(evt) {
  theswitch.on()
```

definition(

name: "Smart Light", namespace: "com.example", author: "example", category: "Convenience", description: "Turn light on when motion detected."

preferences {

Subscribe method

Indicate one transition from start state to intermediate state

Handler method (may contain if-else logic)

Determine how the state will transition to other states

Evaluation for Open-source Apps

181 open-source SmartApps from
SmartThings Public GitHub Repository

Success Rate

Dataset

150 / 181 (82.9%) were successfully constructed

Marketplace

52 SmartApps, where 36 are open-source 32 / 36 (88.9%) were successfully constructed

Failure Cases

Working logic cannot be modeled as DFA (*e.g.*, the app does not automate any physical device)

What if we do not have access to the source code of SmartApps?

Still the same SmartApp Smart Light

Now turn our eyes towards its app interface (i.e., UI)

		♥⊿ 🗋 09:22
My Apps	Smart Light	Done
when there is m	iovement	
Select a mot	ion sensor	
Tap to set		>
Turn on a light		
Soloot a light	+	
Tap to set	L	>
Tap to set		
Assign a nan	ne	
Tap to set		
Set for speci	ific mode(s)	
Choose Mod	les	>
	Remove	
	\square	

Text extraction

DFA building

Our method NLP analysis

Text extraction →

DFA building

Text extraction

★ Symbol inference
 →

DFA building

Text extraction

Symbol inference \longrightarrow DFA building

Candidate reduction

Text descriptions for SmartApps require a unique language model However, our training set is inadequate

Our strategy : test all the device candidates for a certain SmartApp and reduce the candidate set in advance

Text extraction

Event 1 Candidate Reduction **Candidate reduction** We created **221** virtual device handlers There were **52** capabilities in total For 28 / 52 capabilities, candidates can be reduced to 1 The average reduced candidates number is 2.27 switch.on DFA

Text extraction

Symbol inference \longrightarrow DFA building

NLP analysis

NLTK : extract the noun phases and verb phrased for capability analysis

water → Water Sensor

Word2Vec : analyze the context of the verb phrases and then determine the state of attributes or commands

when water is sensed \rightarrow water.wet

Text extraction

DFA building

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

Misbehavior Detection via Wireless Fingerprint

Misbehavior Detection via Wireless Fingerprint

Traffic collection

Traffic collection

Filtering noise traffic

Fingerprinting events

Inferring events

Traffic collection

ZigBee traffic

- TI CC2531 USB Dongle
- 802.15.4 monitor
- 2.4GHz

Z-Wave traffic

- USRP
- Scapy-Radio
- 908.4MHz and 916MHz

Traffic collection

Filtering noise traffic

Fingerprinting events

Inferring events

Filtering noise traffic Beacon packets

 Used for acknowledging data transmission and maintaining established connection

Retransmission packets

Used for transmission failure

Unrelated traffic

 Traffic from devices using other wireless standards (*e.g.*, WiFi)

Traffic collection

Filtering noise traffic

Fingerprinting events

Inferring events

Fingerprinting events

We adopt *Levenshtein Distance* to measure the sequence similarity between packet sequence

Tr	Leve	ensh	teir	ra	tio	for	12	typ	es	of Z	ZigE	Bee	events s	
		A = 0.96	0.47	0.00	0.66	0.00	0.49	0.00	0.14	0.00	0.00	0.33	0.20 -	
		B - 0.47	1.00	0.00	0.00	0.00	0.49	0.00	0.14	0.00	0.50	0.00	_{0.00} - stance to)
		C - 0.00	0.00	0.99	0.00	0.00	0.33	0.35	0.12	0.67	0.33	0.50	0.67 - iilarity	
Filte		D - 0.66	0.00	0.00	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.40	0.22 -	
		E - 0.00	0.00	0.00	0.00	0.99	0.00	0.00	0.00	0.00	0.00	0.00	0.00 -	
		F – 0.49	0.49	0.33	0.00	0.00	0.97	0.00	0.29	0.50	0.00	0.00	0.20 -	
		G - 0.00	0.00	0.35	0.00	0.00	0.00	0.93	0.00	0.00	0.00	0.39	0.22 -	
Finge		H – 0.14	0.14	0.12	0.00	0.00	0.29	0.00	1.00	0.14	0.00	0.00	0.10 -	
		I - 0.00	0.00	0.67	0.00	0.00	0.50	0.00	0.14	0.98	0.48	0.33	0.40 -	
		J - 0.00	0.50	0.33	0.00	0.00	0.00	0.00	0.00	0.48	0.99	0.33		
		K - 0.33	0.00	0.50	0.40	0.00	0.00	0.39	0.00	0.33	0.33	1.00	0.66 - packet	
Infe	errino	L = 0.20	0.00	0.67	0.22	0.00	0.20	0.22	0.10	0.40	0.20	0.66		
		A	В	С	D	E	F	G	Н		J	K	L	

Traffic collection

Filtering noise traffic

Fingerprinting events

Inferring events

Inferring events

Partition the traffic flow into a set of bursts (a group of consecutive packets within *burst threshold*)

Match the burst with the possible fingerprint by calculating their Levenshtein Distance

Find smallest $dist(S_t^{d_i \leftrightarrow d_j}, \mathcal{F}^{\phi})$

Tra

F

Fingerprints for event types supported by 11 devices

		Event Name	Device Name	Protocol	Fingerprint	
		water.wet ^A			54 ↑ 45 ↑	
		water.dry	Samsung SmartThings Water Leak Sensor	ZigBee	54 ↑ 45 ↑	
		temperature			53 ↑ 45 ↑	of
		motion.active		7	54 1	
		motion.inactive	Samsung Smart I hings Motion Sensor	ZigBee	54 1	
		temperature			53 45	
		switch.on ^C	Samsung SmartThings Outlet	ZigBee	$50 \downarrow 47 \downarrow 47 \downarrow 52 \downarrow$	
		contact open ^D			54 ↑	
Filte		contact closed			54 ↑	
		acceleration.active	Samsung SmartThings Multipurpose Sensor (2016)	ZigBee	$69 \uparrow 65 \uparrow 65 \uparrow 65 \uparrow \cdots$	
		acceleration.inactive		0	Occur after event <i>acceleration.active</i> finishes	
		temperature			53 ↑	
		contact.open			54 ↑ 45 ↑	
		contact.closed		ZigBee	54 ↑ 45 ↑	
		$acceleration.active^E$	Samsung SmartThings Multipurpose Sensor (2015)		69 ↑ 65 ↑ 65 ↑ 65 ↑ · · ·	
		acceleration.inactive			Occur after event <i>acceleration.active</i> finishes	
		temperature			53 ↑ 45 ↑	
		beep ^F		ZigBee	$50 \downarrow 45 \downarrow$	
		rssi ^G	Samsung SmartThings Arrival Sensor		52↑	5
		presence.present ¹¹			57 ↑ 48 ↑ 45 ↑ 45 ↑ 45 ↑ 45 ↑ 50 ↑ 45 ↑ 50 ↑ 45 ↑ 50 ↑ 45 ↑	
-mae		presence.not present			Occur after there is no periodic event rssi	
		switch.on ¹			$50 \downarrow 47 \downarrow$	
		switch.off	Osram Lightify CLA 60 RGBW	ZigBee	$50 \downarrow 47 \downarrow$	
		catColorTemperature ^K	Column Eighting CERT of ROD W	Lighte	$53 \downarrow 47 \downarrow$	
		setColor ^L			$54 \downarrow 47 \downarrow 52 \downarrow 47 \downarrow$ 50 47 54 47 52 47 52 47	
		switch on				
		switch.off	Power Monitor Switch (TD1200Z1)	Z-Wave	$13 \downarrow 12 \downarrow 10 \downarrow$	
		motion.active	Acata MaltiCaraan (7 Wesse	14 ↑ 21 ↑	
		motion.inactive	Aeotec MultiSensor 6	Z-wave	14 † 21 †	,
		contact.open	Aeotec Door/Window Sensor 6	Z-Wave	17 ↑ 17 ↑	ϕ
lof		contact.closed			17 ↑ 17 ↑	T
	t	alarm.siren	Aeotec Siren (Gen 5)	Z-Wave	$13 \downarrow 34 \downarrow 11 \downarrow 33 \downarrow 11 \downarrow 21 \downarrow 11 \downarrow$	

SmartApp Misbehavior Detection

DFA matching algorithm

Input	A sequence of events $\mathbb{E} = \{E_{t_1}^{\phi_1}, E_{t_2}^{\phi_2}, \dots, E_{t_n}^{\phi_n}\}$
Process	Initially, $S_0 = q_0$. For each event in sequence, transition DFA if $E_{t_i}^{\phi_i} \in \Sigma \land \delta(S_i, E_{t_i}^{\phi_i}) = S_{i+1} \in Q$
Output	Accept state: $S_n \in F$ Otherwise a misbehaved SmartApp is detected

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

Testbed

ZigBee sniffing : TI CC2531 USB Dongle **Z-Wave sniffing** : two USRPs

Distance between SmartThings hub and *HoMonit* is 7 feet

Dataset : 30 open-source SmartApps from SmartThings Public GitHub Repository

Smart devices : 7 ZigBee devices and 4 Z-Wave devices

Determining the burst threshold

Burst threshold

A parameter used to cluster captured wireless packets for the same event

Experiment

Randomly select 8 different devices Trigger each event for 50 times Interval range: 3 ~ 10 secs F1 score to measure the accuracy

We choose the burst threshold as **1s** for remainder evaluation

SmartApp Inference Accuracy

Experiment

20 SmartApps for ZigBee devices 10 SmartApps for Z-Wave devices Trigger each SmartApp for 20 times Sniffer distance: 6 feet away Burst threshold: 1s Pre, Rec and F1 for measurement

Pre (precision)

The number of *correctly inferred* SmartApp invocation over the total number of inferences made

Rec (recall)

The number of *successfully inferred* SmartApp invocation over the 20 invocation of each SmartApp

F1 (F1-score)

The *harmonic average* of precision and recall

Smart

SmartApp inference accuracy result

		SmartApp Protocol		Devices		Rec	F1	and	
		Lights Off When Closed	Lights Off When Closed ZigBee Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW		1.00	0.90	0.95	eneu	
		Turn It On When It Opens	ZigBee	Samsung SmartThings Multipurpose Sensor (2016), Samsung SmartThings Outlet	1.00	0.95	0.97		
		Darken Behind Me	ZigBee	Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW	1.00	0.95	0.97		
		Let There Be Light	ZigBee	Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW	1.00	0.95	0.97		
		Monitor On Sense	ZigBee	Samsung SmartThings Multipurpose Sensor (2016), Samsung SmartThings Outlet	1.00	0.80	0.89		
		Big Turn On	ZigBee	Samsung SmartThings Outlet	1.00	1.00	1.00	as made	
		Big Turn Off	ZigBee	Samsung SmartThings Outlet	1.00	1.00	1.00	mauc	
zxper		Presence Change Push	ZigBee	Samsung SmartThings Arrival Sensor	1.00	1.00	1.00		
-		Door Knocker	ZigBee	Samsung SmartThings Multipurpose Sensor (2016)	1.00	0.95	0.97		
		Let There Be Dark	ZigBee	Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW	1.00	0.80	0.89		
		Flood Alert	ZigBee	Samsung SmartThings Water Leak Sensor	1.00	1.00	1.00		
20 Sm	lar	Turn It On When I'm here	ZigBee	Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet	1.00	1.00	1.00		
		The Gun Case Moved	ZigBee	Samsung SmartThings Multipurpose Sensor (2015)	1.00	1.00	1.00		
		It Moved	ZigBee	Samsung SmartThings Multipurpose Sensor (2016)	1.00	1.00	1.00	nterred	
$10 \ Cm$		Light Follows Me	ZigBee	Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW	1.00	0.95	0.97		
10 311	a	Undead Early Warning	ZigBee	Samsung SmartThings Multipurpose Sensor (2016), Osram Lightify CLA 60 RGBW	1.00	0.90	0.95	00	
		Cameras On When I'm Away	ZigBee	Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet	1.00	0.95	0.97	ne 20	
		Brighten My Path	ZigBee	Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW	1.00	1.00	1.00		
l rigge	er e	Dry The Wetspot	ZigBee	Samsung SmartThings Water Leak Sensor, Samsung SmartThings Multipurpose Sensor (2016)	1.00	0.95	0.97	q	
		Curling Iron	ZigBee	Samsung SmartThings Motion Sensor, Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet	1.00	1.00	1.00		
Snitte		Big Turn On	Z-Wave	Power Monitor Switch (TD1200Z1)	1.00	0.90	0.95		
		Brighten My Path	Z-Wave	Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.85	0.92		
		Darken Behind Me	Z-Wave	Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.85	9.92		
Ruret	thr	Forgiving Security	Z-Wave	Aeotec MultiSensor 6, Aeotec Siren (Gen 5), Power Monitor Switch (TD1200Z1)	1.00	0.90	0.95		
Juisi		Let There Be Dark	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	nining	
		Let There Be Light	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	ISION	
Pre R		Light Follows Me	Z-Wave	Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.90	0.95		
	e	Lights Off When Closed	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	7	
· •, •		Smart Security	Z-Wave	Aeotec MultiSensor 6, Aeotec Siren (Gen 5), Aeotec Door/Window Sensor 6	1.00	1.00	1.00		
		Turn It On When It Opens	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97		

Smart

SmartApp inference accuracy result

		SmartApp Protocol Devices		Pre	Rec	F1		
		Lights Off When Closed	ZigBee	Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW	1.00	0.90	0.95	errea
		Turn It On When It Opens	ZigBee	Samsung Smart Things Multipurpose Sensor (2016), Samsung Smart Things Outlet	1.00	0.95	0.97	
		Darken Behind Me	ZigBee	Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW	1.00	0.95	0.97	
		Let There Be Light	ZigBee	Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW	1.00	0.95	0.97	
		Monitor On Sense	ZigBee	Samsung SmartThings Multipurpose Sensor (2016), Samsung SmartThings Outlet	1.00	0.80	0.89	
		Big Turn On	ZigBee	Samsung SmartThings Outlet	1.00	1.00	1.00	nes made
-		Big Turn Off	ZigBee	Samsung SmartThings Outlet	1.00	1.00	1.00	maac
zxper		Presence Change Push	ZigBee	Samsung SmartThings Arrival Sensor	1.00	1.00	1.00	
-		Door Knocker	ZigBee	Samsung SmartThings Multipurpose Sensor (2016)	1.00	0.95	0.97	
		Let There Be Dark	ZigBee	Samsung SmartThings Multipurpose Sensor (2015), Osram Lightify CLA 60 RGBW	1.00	0.80	0.89	
		Flood Alert	ZigBee	Samsung SmartThings Water Leak Sensor	1.00	1.00	1.00	
20 Sm	ar	Turn It On When I'm here	ZigBee	Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet	1.00	1.00	1.00	
		The Gun Case Moved	ZigBee	Samsung SmartThings Multipurpose Sensor (2015)	1.00	1.00	1.00	· · ·
		It Moved	ZigBee	Samsung SmartThings Multipurpose Sensor (2016)	1.00	1.00	1.00	nterred
10 Sm	ar	Light Follows Me	ZigBee	Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW	1.00	0.95	0.97	
	a	Undead Early Warning	ZigBee	Samsung SmartThings Multipurpose Sensor (2016), Osram Lightify CLA 60 RGBW	1.00	0.90	0.95	00
		Cameras On When I'm Away	ZigBee	Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet	1.00	0.95	0.97	ne 20
		Brighten My Path	ZigBee	Samsung SmartThings Motion Sensor, Osram Lightify CLA 60 RGBW	1.00	1.00	1.00	
l rigge	er e	Dry The Wetspot	ZigBee	Samsung SmartThings Water Leak Sensor, Samsung SmartThings Multipurpose Sensor (2016)	1.00	0.95	0.97	q
		Curling Iron	ZigBee	Samsung SmartThings Motion Sensor, Samsung SmartThings Arrival Sensor, Samsung SmartThings Outlet	1.00	1.00	1.00	
Snittei		Big Turn On	Z-Wave	Power Monitor Switch (TD1200Z1)	1.00	0.90	0.95	
		Brighten My Path	Z-Wave	Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.85	0.92	
		Darken Behind Me	Z-Wave	Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.85	9.92	
Ruret	th r	Forgiving Security	Z-Wave	Aeotec MultiSensor 6, Aeotec Siren (Gen 5), Power Monitor Switch (TD1200Z1)	1.00	0.90	0.95	
Juist		Let There Be Dark	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	noicion
		Let There Be Light	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	
Pre. R		Light Follows Me	Z-Wave	Aeotec MultiSensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.90	0.95	
	e	Lights Off When Closed	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	
. •, •		Smart Security	Z-Wave	Aeotec MultiSensor 6, Aeotec Siren (Gen 5), Aeotec Door/Window Sensor 6	1.00	1.00	1.00	
		Turn It On When It Opens	Z-Wave	Aeotec Door/Window Sensor 6, Power Monitor Switch (TD1200Z1)	1.00	0.95	0.97	

Impact of Distance and Wireless Obstacles

The effectiveness of app inference may be affected by the environment condition (sniffer distance)

Experiment

- 1. 6 feet without walls
- 2. 16 feet with 1 wall
- 3. 33 feet with 2 walls

Reconsider the two types of attacks...

Platform (SmartThings) – Misbehavior types

- Over-privileged accesses
 - Illegally obtaining accesses to command / all the capabilities of the devices
- Event spoofing
 - A malicious SmartApp with the knowledge of the hub and device identifiers can spoof an arbitrary event

Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis of emerging smart home applications. In IEEE Symposium on Security and Privacy (S&P).

Misbehavior Detection

Over-privileged accesses

Strategy

HoMonit detects this misbehavior by checking additional states in DFA matching process

Experiment

30 benign & misbehaving apps3 volunteers to simulate residents20 times triggering for each app

Over-privileged access realization We develop over-privileged apps by adding malicious code to cause unintended operations

SmartApp Example

Brighten My Path Turn the light on when motion detected Only requires command on() of switch

- 1. Illegally obtaining accesses to off()
- 2. Illegally gaining accesses to all capabilities of the device

Misbehavior Detection

Event spoofing

Strategy

HoMonit detects this misbehavior by checking missing states in DFA matching process

Experiment

Same approach as overprivilege access evaluation

Event spoofing realization

We develop event-spoofing apps by exploiting insufficient event protection mechanism to spoof a physical event and trigger subscribed apps

SmartApp Example

Flood Alert Trigger a siren alarm for a wet state Each device is assign with a 128-bit identifier A fake wet event can be raised by exploiting the device identifier without permission requirement

Misbehavior Detection Result

Metrics

TP (true positive) : Correctly labeled misbehaving SmartApp
TN (true negative) : Correctly labeled benign SmartApp
FP (false positive) : Incorrectly labeled benign SmartApp
FN (false negative) : Incorrectly labeled misbehaving SmartApp
TPR (true positive rate) : TPR = TP / (TP + FN)
TNR (true negative rate) : TNR = TN / (FP + TN)

Misbehavior Detection Result

Metrics

TNR (true negative rate) : TNR = TN / (FP + TN)

Misbehavior Detection Result

Metrics

Detection result of misbehavior occurrence in SmartApps

	ZigBee (20 misbehaving	g + 20 benign)	Z-Wave (10 misbehaving + 10 benign)		
	Over-privileged accesses	Event spoofing	Over-privileged accesses	Event spoofing	
TPR	0.98 (0.03)	0.99 (0.02)	0.98 (0.04)	0.99 (0.04)	
TNR	0.95 (0.07)	0.95 (0.06)	0.92 (0.05)	0.92 (0.05)	

P (false positive) : Incorrectly labeled benign SmartApp

The average TPR for *over-privileged accesses* is 0.98 The average TPR for *event spoofing* is 0.99 Failed test case reason : packet loss, unexpected wireless traffic, accidental signal reception delay

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

Privacy Consideration

Side-channel information leakage is a double-edged sword

Daily routines : The attacker can spy on the victim's daily activities SmartApp Example

Good Night : change its mode when there is no human activity in the home

Home occupations : The attacker can infer it by detecting the app existence SmartApp Example

Vacation Lighting Director : deceptively control lights while residents are away

Health conditions : The attacker can infer the health condition of residents SmartApp Example

Elder Care: Slip & Fall : monitor the behavior of the aged people

Outline

- Motivation
- Design Overview
- DFA Building via SmartApp Analysis
- Misbehavior Detection via Wireless Fingerprint
- Evaluation
- Discussion
- Conclusion

Conclusion

HoMonit	An anomaly detection system for smart home platforms to detect misbehaving SmartApps					
Insight	Leverage the side-channel information leakage in the wireless channel to infer device event					
Contribution	Program logic extraction from source code or UI, and auto DFA construction & matching algorithms					
Performance	HoMonit can effectively validate the working logic of SmartApps and achieve a high accuracy in the detection of SmartApp misbehaviors					

Thanks! zhang-wei@sjtu.edu.cn