Understanding the Reproducibility of Crowd-reported Security Vulnerabilities

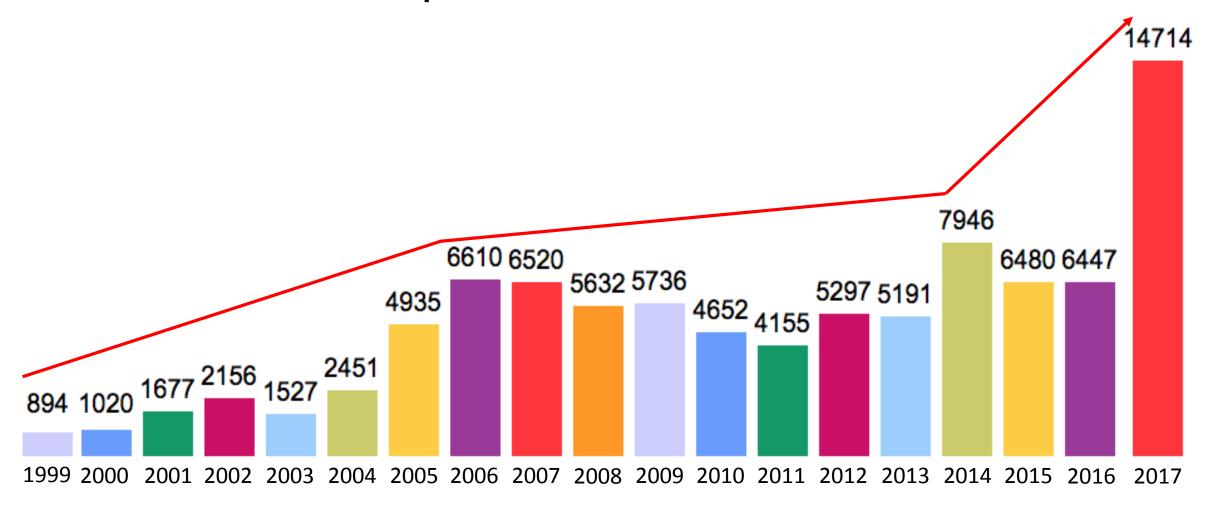
Dongliang Mu¹², Alejandro Cuevas², Limin Yang³, Hang Hu³, Xinyu Xing², Bing Mao¹, Gang Wang³

- 1. Nanjing University
- 2. Pennsylvania State University
- 3. Virginia Tech

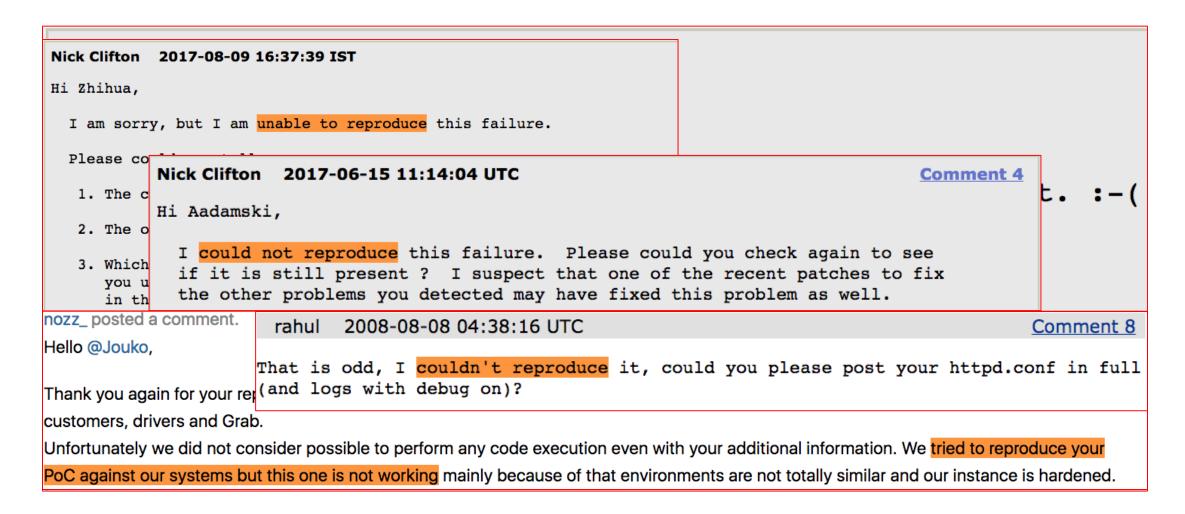




Real World Effects of Security Vulnerabilities


CVE-2014-6271 ShellShock

CVE-2017-0144 WannaCry


It is infeasible for in-house teams to identify all possible vulnerabilities before a software release

Massive Crowd-reported Vulnerabilities Over Time

Number of vulnerabilities reported to CVE¹ by year

Vulnerability Reproduction Can Be Challenging

Consequences of Poor Reproducibility

Research Papers that use public vulnerabilities for evaluation	# of Vulnerability
SP'2018	9
Usenix'2017	8
Usenix'2015	6
NDSS'2015	7
Usenix'2015	8
NDSS'2011	14
SP'2008	5
Usenix'2005	4
Usenix'1998	8

Poor reproducibility makes it hard to thoroughly evaluate security solutions

This Work

Q1: How reproducible are public security vulnerability reports?

Q2: What makes vulnerability reproduction difficult?

Q3: How to improve the efficiency of vulnerability reproduction?

We answer three questions by manually reproducing vulnerabilities

Roadmap

- Methodology
- Findings
- Survey
- Suggestions
- Conclusion

We surveyed 48 external security professionals from both academia and industry to examine people's perceptions towards the vulnerability reports and their usability

Vulnerability Report Dataset

- We randomly selected a large collection of reported vulnerabilities
 - We focused on Memory Error Vulnerabilities due to their high severity (Average CVSS Score 7.6 > Overall Average CVSS Score 6.2) and significant real-world impact

We focused on Open Source Linux Software due to debugging and diagnosing

capabilities

- We collected two datasets including,
 - A primary dataset of 291 vulnerabilities with CVE IDs
 - A complementary dataset for 77 vulnerabilities without CVE ID

CVSS Score	Rating
0.1 - 3.9	Low
4.0 - 6.9	Medium
7.0 - 8.9	High
9.0 - 10.0	Critical

Vulnerability Report Dataset (cont.)

We collect vulnera website.

CVE-ID

CVE-2008-5314 Learn mol

CVSS Seve

Description

Stack consumption vulnerability in libcla file, related to the cli_check_jpeg_explo

References

Note: References are provided for the conve

- EXPLOIT-DB:7330
- URL:https://www.exploit-db.com/
- MLIST:[clamav-announce] 200811
- URL:http://lurker.clamav.net/mes
- MLIST:[oss-security] 20081201 CV
- URL:http://www.openwall.com/lis

Top 5 source websites in our dataset

od in the CVE

crash) via a crafted JPEG

Published: 2008-12-03

Platform: Multiple

Vulnerable App: N/A

amav 0.93.3 and 0.94 (and probably ets called without checking any kind rulnerable code looks like:

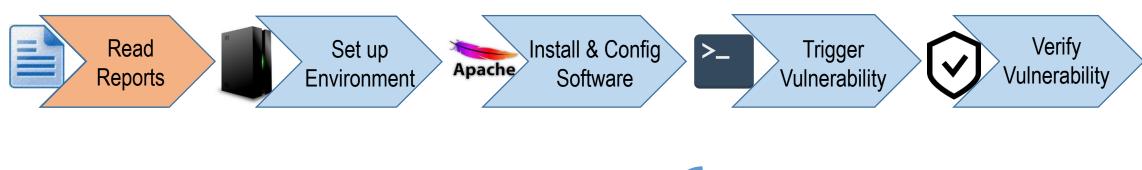
CVE-2008-5

√ulnerability reports

The Analyst Team

We formed a team of 5 security analysts to carry out our experiments

Security


Analysts

In-depth knowledge of memory error vulnerabilities

First-hand experience analyzing vulnerabilities, writing exploits, and developing patches

Rich Catch-The-Flag experience, and have discovered and reported over 20 new vulnerabilities to CVE website

Reproduction Workflow

- Vulnerable Version
- Operating System
- Software Installation
- Software Configuration
- Proof-of-Concept File
- Trigger Method
- Vulnerability Verification

Default Setting for missing information

Set up the operating system for vulnerable software analysis

	Information	Default Setting
(Operating System	A Linux system that was released in (or slightly before) the year when the vulnerability was reported

- Vulnerable Version
- Operating System
 - Software Installation
 - Software Configuration
 - Proof-of-Concept File
 - Trigger Method
 - Vulnerability Verification

- Compile vulnerable software with the compilation options
- Install vulnerable software with the configuration options

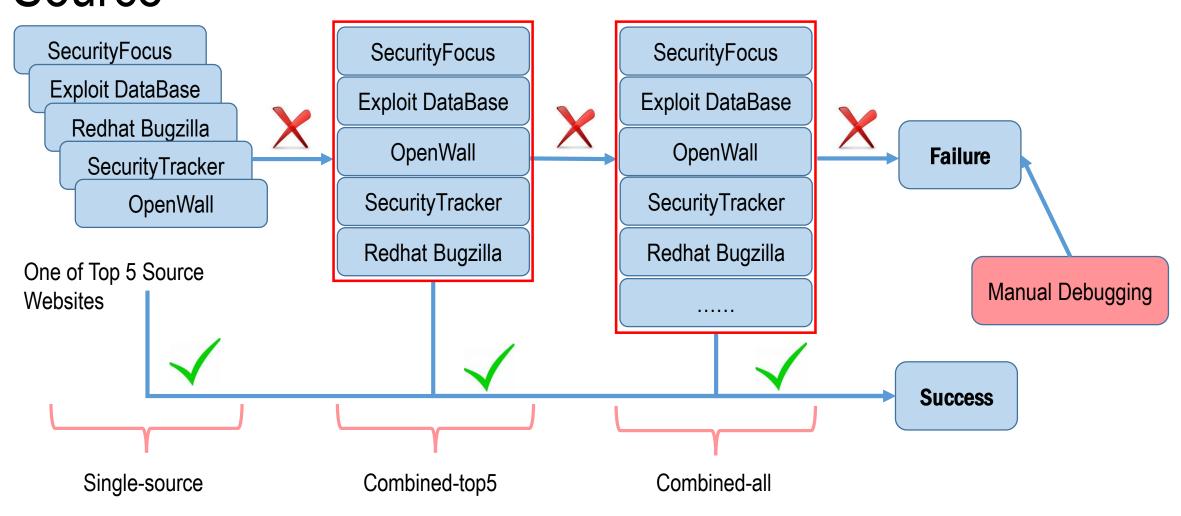
Building System	Default Setting				
automake	make; make install				
autoconf & automake	./configure; make; make install				
cmake	mkdir build; cd build; cmake/; make; make install				

- Vulnerable Version
- **Operating System**
- Software Installation
- **Software Configuration**
- Proof-of-Concept File
- **Trigger Method**
- **Vulnerability Verification**

Trigger the vulnerability by using the Proof-of-Concept File

Type of PoC	Default Setting
Shell commands	Run the commands with the default shell
Script program (e.g., python)	Run the script with the appropriate interpreter
C/C++ code	Compile code with default options and run it
A long string	Directly input the string to the vulnerable program
A malformed file (e.g., jpeg)	Input the file to the vulnerable program

- Vulnerable Version
- Operating System
- Software Installation
- Software Configuration
- Proof-of-Concept File
 - Trigger Method
 - Vulnerability Verification



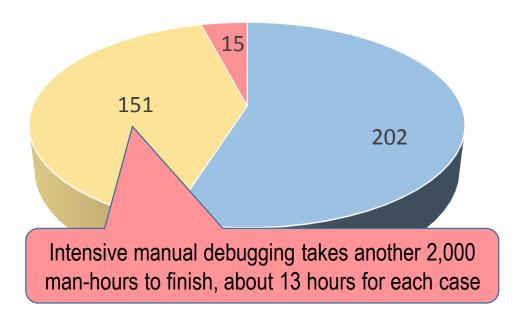
Verify the vulnerability with expected program behavior

Information	Default Setting		
Vulnerability Verification	Unexpected program termination (or program "crash")		

- Vulnerable Version
- Operating System
- Software Installation
- Software Configuration
- Proof-of-Concept File
- Trigger Method
- ✓ <u>Vulnerability Verification</u>

Reproduction Experiment: Controlled Information Source

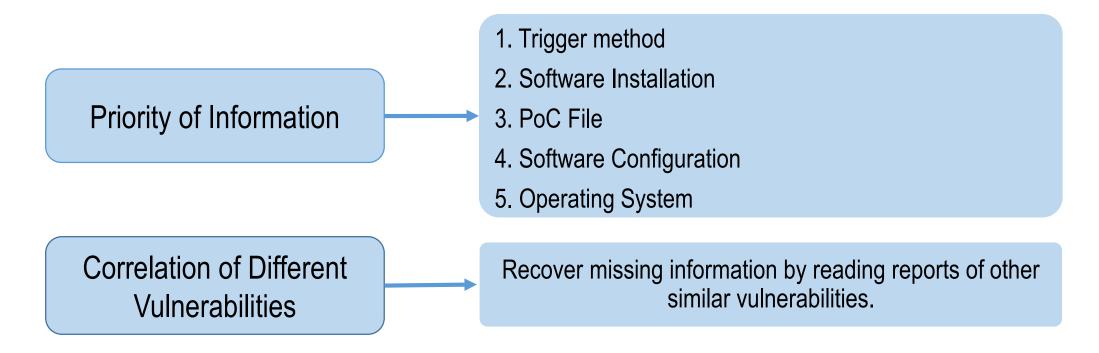
Roadmap


- Methodology
- Findings
- Suggestions
- Conclusion

Finding 1: Vulnerability Is Difficult to Reproduce

Information Source	CVE Reproduction (N=291)			
	# of # of Success		Success Rate	
SecurityFocus	256	32	12.6%	
Redhat Bugzilla	195	19	9.7%	
ExploitDB	156	46	29.5%	
OpenWall	153	67	43.8%	
SecurityTracker	89	4	4.5%	
Combined-top5	287	126	43.9%	
Combined-all	291	182	62.5%	
Information Source		Non-CVE Reproduc	tion (N=77)	
Combined-all	77	20 (25.6%)	25.6%	

Finding 2: Key Factors Make Reproduction Difficult

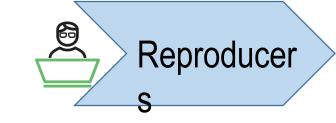

Reproduction State After Manual Debugging

- Success in Combined-all
- Reproduced by Manual Debugging
- Failure after Manual Effort

Report Information	# of vulnerabilities addressed by Manual Debugging				
Trigger Method	74				
Software Installation	43				
PoC File	38				
Software Configuration	6				
OS information	4				
Software version	1				
Vulnerability Verification	0				

Finding 3: Useful Tips for Information Recovery

For 74 cases that failed on trigger method, we recovered 68 cases by reading other similar vulnerability reports


Roadmap

- Methodology
- Findings
- Suggestions
- Conclusion

Our Ideas of Making Vulnerability Reproduction Easier

CVE-2007-1001 misses Trigger Method CVE-2013-7226 misses Installation Options CVE-2007-1465 misses Proof-of-Concept

.....

Manually generating standardized reports is really time-consuming

With standardized reports, it's a waste of resource if we still reproduce vulnerability entirely by manual efforts

1

Standardize Vulnerability Reports

Develop Useful Automated Tools to Collection Information

Automate the Vulnerability Reproduction

Conclusion

Vulnerability reproduction is difficult and requires extensive manual efforts

A crowdsourcing approach could increase the reproducibility

Apart from manual debugging based on experience, Internet-scale crowdsourcing and some heuristics could help recover missing information

There is an urgent need to automate vulnerability reproduction and overhaul current vulnerability reporting systems

Data Sharing

- DataSet: https://vulnreproduction.github.io/ (12 Virtual Machine Images)
- Github Repo: https://github.com/VulnReproduction/LinuxFlaw

We provide 300+ Reproducible Vu

• For each vulnerability, we have :

Fully-tested Proof-of-Concept

Pre-configured virtual machine or Docker Image

Detailed instructions on how to reproduce the vulnerability

Structured information fields (in HTML and JSON)

Name: Dongliang Mu

Homepage: http://mudongliang.me/about/

Email: <u>dzm77@ist.psu.edu</u>

References

	Research Papers that use public vulnerabilities for evaluation	# of Vulnerability
Usenix'2005	Non-control-data attacks are realistic threats	4
SP'2008	Preventing memory error exploits with wit	5
Usenix'2015	Control-flow bending: on the effectiveness of control-flow integrity	6
NDSS'2015	Preventing Use-after-free with Dangling Pointers Nullification	7
Usenix'1998	StackGuard : automatic adaptive detection and prevention of buffer-overflow attacks	8
Usenix'2017	Towards efficient heap overflow discovery	8
Usenix'2015	Automatic Generation of Data-Oriented Exploits	8
SP'2018	Data-oriented programming: On the Expressiveness of Non-Control Data Attacks	9
NDSS'2011	AEG: Automatic exploit generation	14

Finding: Vulnerability Reports Are Often Incomplete

Experiment Strategy		Vulnerability Reports for CVE with Missing Information						
	Covered CVE IDs	Software Version	Software Installation	Software Configuration	OS Information	PoC File	Trigger Method	Vulnerability Verification
SecurityFocus	256	9	255	233	116	131	210	227
Redhat Bugzilla	195	48	195	179	0	154	168	147
ExploitDB	156	5	155	137	132	20	100	111
OpenWall	153	28	152	140	153	72	72	71
SecurityTracker	89	3	87	71	73	69	62	61
Combined-top5	287	3	284	259	55	70	125	138
Combined-all	291	1	280	256	52	17	82	106

Case Study

GAS CVE-2005-4807 misses Trigger Method

Solution: C Code should be compiled to malicious assemble file by "gcc -S", and then feed it to GAS.

libgd CVE-2013-7226 misses Installation Information

Solution: "--with-gd" is a necessary compilation option to build PHP

coreutils CVE-2013-0221 misses Environment Information

Solution: patch vulnerable "coreutils-i18n.patch" applied in OpenSUSE by default