
An Empirical Study of Web Resource Manipulation
in Real-world Mobile Applications

Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, Min Yang

XiaoFeng Wang, Long Lu, and Haixin Duan

Page 2

Motivating Case

• A random chatting app with 10,000,000 to 50,000,000 installations

Page 3

Motivating Case: Stealing and abusing Cookies

App chatous steals
Facebook cookies and
abuses them to collect
sensitive user info and
send spams

package com.chatous.chatous.managers;

…

public class FacebookManager extends Manager {

…

if (CookieManager.getInstance().getCookie(“https://facebook.com") != null) {

// get Facebook cookies

cookies = CookieManager.getInstance().getCookie(“https://facebook.com");

// use these cookies to access user’s Facebook homepage

DefaultHttpClient httpclient = new DefaultHttpClient();

htttpclient.setCookieStore(cookieStore);

HttpResponse response =

httpclient.execute(new HttpGet(“https://facebook.com/first_degree.php?“ + …));

…

// get user’s friend list and send spam invitations

List<String> friends = parse_response(response);

for (friend: friends) {

send_invitations(friend);

}

Page 4

Motivating Case

The Website facebook.com is loaded into
WebViews of two apps

• both apps use CookieManager.getCookie to
get cookies of facebook.com

facebook.com

// get Facebook

cookies

CookieManager.getI

nstance().getCookie(

“facebook.com");

// get Facebook

cookies

CookieManager.getI

nstance().getCookie(

“facebook.com");

Observation: it is risky when security principals are crossed!

App A : Facebook’s official app

App B: Chatous, a third-party app

A B

 

Page 5

Definitions

• Two security principals involved

• Web Principal, the manipulated Web resources, 𝑃𝑤
• App Principal, the manipulating code, 𝑃𝐴

• Cross Principal Manipulation (XPM)

Target: to measure XPMs in real-world apps

facebook.com

// get Facebook

cookies

CookieManager.getI

nstance().getCookie(

“facebook.com");

𝑃𝑤:

𝑃𝐴:

𝑃𝑤 ≠ 𝑃𝐴

XPM

Page 6

Methodology

package com.chatous.chatous.managers;

…

if (CookieManager.getInstance().getCookie(“https://facebook.com") != null) {

// get Facebook cookies

cookies = CookieManager.getInstance().getCookie(“https://facebook.com");

// store these cookies

BasicCookieStore cookieStore = new BasicCookieStore();

cookieStore.addCookie(cookies);

…

// abuse these cookies to collect user privacy information.

…

• Finding XPMs in real-world apps

1. locate all manipulations 2. identify 𝑃𝐴 and 𝑃𝑊 3. determine 𝑃𝐴 = 𝑃𝑊 ?

𝑃𝐴 ≠ 𝑃𝑊  XPM

Non-trivial

Page 7

Web Resource Manipulation APIs

• Both Android and iOS provide a handful of APIs for host apps to
manipulate the Web resources

Examples:

1. obtain cookies using CookieManager.getCookie

2. intercept network traffic to get user credentials using shouldInterceptRequest

Manipulated Web

Resources
Android WebView iOS UIWebView iOS WKWebView

Local Storage CookieManager NSHTTPCookieStorage WKWebsiteDataStorage

Web Content
loadUrl,

evaulateJavascript

stringByEvaluatingJavascript

FromString
evaluateJavascript

Web Address
onPageFinished,

shouldOverrideUrlLoading
\ \

Network Traffic shouldInteceptRequest shouldStartLoadWithRequest
decidePolicyForNavigationAction,

decidePolicyForNavigationResponse

Is it secure?

Page 8

Identify App Principals

Challenge 1: multiple security principals
exist in the app

• the host app itself

• several third-party libraries

• Solution: identify third-party libraries
• 𝑷𝑨 of third-party library: library name
• 𝑷𝑨 of the host app: host app’s meta-info

• library identification algorithm
• Merkle-tree based code signature

• please refer to our paper for more details

facebook.com

// get Facebook

cookies

CookieManager.getI

nstance().getCookie(

“facebook.com");

𝑃𝑤:

FB_SDK


not XPM

XPM

Page 9

Determine 𝑷𝒘 = 𝑷𝑨 ?

Challenge 2: semantic gaps between 𝑃𝑤 and
𝑃𝐴

• “chatous” and “facebook” 

• “qq” and “Tencent” 

• abbreviation: “fb” and “facebook” 

facebook.com

// get Facebook

cookies

CookieManager.getI

nstance().getCookie(

“facebook.com");

𝑃𝑤:

𝑃𝐴:

?

Page 10

Determine 𝑷𝒘 = 𝑷𝑨 ?

Challenge 2: semantic gaps between 𝑃𝑤 and
𝑃𝐴

• “chatous” and “facebook”

• “qq” and “Tencent”

• abbreviation: “fb” and “facebook”

• solution: ask search engine

• e.g. “facebook” and “fb” have more than 80%
similarity in google search result

• searching-based classifier

• normalize search results into 𝑊 𝑎𝑛𝑑 𝐴 using
bag-of-words model

• similarity distances between these two vectors

Page 11

XPMChecker Design & Implementation

Implementation is based on Soot and FlowDroid

• with customized ICFG

• API-specific data flow analysis

Manipulation

Information

Extractor

API Model

Database

 Principal Identifier

 XPMClassifier

Search engine

Web principal App principal

XPMChecker Overview

XPM?

(please refer to our paper for more technical details)

1

2

3

Page 12

XPMChecker Evaluation

• Dataset
• 84,712 apps from Google Play during Jul 2017, with at least 5,000

installations across 48 categories.

• Performance
• 95.3% of all apps (80,694/84,712) are successfully analyzed
• 233 hours with 9 processes, 10 seconds/app.

• CentOS 7.4 64-bit server, 64 CPU cores (2GHz), 188 GB memory
• 9 processes, 20 minutes timeout

• Effectiveness
• with 200 manually labeled ground truth
• 98.9% precision and 97.9% recall (𝜃 = 0.3134)

Page 13

Finding: XPM Prevalence

• XPMs are very popular in real-world apps
• 4.8% (3,858/80,694) of all apps contain XPMs

• 49.2% (14,776/29,448) of all Web resource manipulations are
cross-principal.

of Apps (% in all apps) # of manipulations

Apps that manipulate Web

resources

13,599 (16.9%) 29,448

Apps with XPMs 3,858 (4.8%) 14,476 (49.2%)

Page 14

Finding: XPM Location

• A large part of XPMs are from
libraries.

• 63.6% of XPMs originate from 88
libraries in our dataset

• Reflections on current defensive work

• works that consider the app as a single
principal is not fine-grained enough nor
accurate
[WIREFRAME, AsiaCCS’17]

XPM in

host apps

36%

XPM in

libraries

64%

XPM LOCATION

Page 15

Finding: XPM Targets and Their Awareness

• More than 70% of XPMs target top
popular Web services
• such as Google, Facebook, YouTube,

Twitter, etc.

• However, most of them are unaware of such
risks
• all the above providers except Goolge allow

sensitive Web services to be loaded into
WebViews of any apps.

• Google are unable to effectively prevent users
from using WebView to do OAuth.

• Google announcement, Aug 2016

Other Web

services

28%

Top 10

Web

services

72%

XPM TARGET

https://developers.googleblog.com/2016/08/modernizing-oauth-interactions-in-native-apps.html

Page 16

• More than 90% XPMs provide normal utilities

• Inject JS to customize Web services to improve user experience

• add navigation controls

• customize Google Cloud Print

• Monitor Web addresses to invoke local apps

Finding: XPM Intents

Web App

Page 17

Malicious XPM Intents

• Confirm malicious XPMs in real-world for the first time

• find 22 malicious XPMs in 21 apps, with up to 130M installations

• report to Google and the malicious intents are removed

• 4 iOS apps with such malicious XPMs are also confirmed

• Three categories:

Malicious behavior # of apps

impersonating legitimate relying party in OAuth 2

stealing user credentials 6

stealing and abusing cookies 14

Page 18

Case Study 1. Impersonating relying party in OAuth

• App instaview impersonates “Tinder” in Instagram OAuth

• a profile tracker for users to see their Instagram visiting statistics

• 1,000,000-5,000,000 installations

package com.instaview.app;

…

public class LoginActivity extends Activity{

…

// get Tinder’s client ID

String clientId = getTinderClientId();

…

this.webview.setWebViewClient(new WebViewClient() {

public boolean shouldOverrideUrlLoading(WebView arg1, String url) {

…

// check if url is Instagram’s OAuth API and extract the acess token for Tinder

if (url.startsWith(“api.instagram.com/oauth”) && contains(“code=”) {

String accessToken = url.substring(url.indexOf(“code=”) + 5, url.length());

// then use this token to access user’s profile info

…

Page 19

Case Study 2. Stealing user credentials

adkingkong steals
user’s Google account
credentials

• an advertising app with
500,000 – 1,000,000
installations

package co.kr.adkingkong.libs.autoinstall;

…

public class GoogleWebLogin extends RelativeLayout {

…

// load Google login Web page

this.webview.loadUrl(“accounts.google.com”);

…

this.webview.setWebViewClient(new WebViewClient() {

public void onPageFinished(WebView arg1, String url) {

…

// inject JS to steal users’ email and password

arg1.loadUrl(“javascript:

if (document.getElementById('gaia_loginform') !== null) {

document.getElementById(‘gaia_loginform’).onsubmit = function onSubmit(form) {

// extract email and password from the login form

email = document.getElementById(‘email-display’).innerHTML;

passwd = document.getElementById(‘Passwd’).value);

…”);

…

Page 20

Conclusion

• Measurement tool: automatically find Cross Principal Manipulation (XPM)

• First large scale empirical study on XPM in real-world

• better understanding of the threat and development of countermeasures

• confirm malicious App-to-Web attacks on both Android and iOS that already affect a
large number of devices

• Dataset released: https://xhzhang.github.io/XPMChecker/

Page 21

Q&A

Thanks !

Xiaohan Zhang

xh_zhang@fudan.edu.cn

