
Toward'a'Trustworthy'Android'

Ecosystem'

1'

Yan'Chen'

Lab'of'Internet'and'Security'Technology'(LIST)'

Northwestern'University,'USA'

'

�

Smartphone Security

•  Ubiquity - Smartphones and mobile
 devices
– Smartphone sales already exceed PC sales
– The growth will continue

•  Performance better than PCs of last
 decade
– Samsung Galaxy S6 Edge: 1,440x2,560 pixel

 display, 2.0 GHz 64bit octa-core, 3GB
 memory

2

Mobile Devices (apps)
 Dominate

3

Android is Leading the Pack

4

Android Ecosystem
Carriers

Vendors

Application
Stores

Developers

Users
Security Vendors

Applications

Devices and OS

Android Threats

•  Malware and vulnerabilities
– The numbers are increasing consistently
– Anti-malware ineffective at catching zero-day and

 polymorphic malware
•  Information Leakage

– Users have no way to know when and what info is
 being leaked out of their device to whom

– Even legitimate apps leak private info though the
 user may not be aware

•  Fraud activities (esp. for mobile payment) 6

flickr.com/photos/panda_security_france/

Privacy Leakage

•  Android permissions are insufficient
–  User still does not know if some

 private information will be leaked
•  Information leakage is more

 dangerous than information access
–  Example 1: popular apps (e.g., Angry

 Birds) leak location info with its
 developer, advertisers and analytics
 services

•  Even doesn t need it for its functionality!
–  Example 2: malware apps may steal

 private data
•  A camera app trojan send video

 recordings out of the phone 7

Fraudulent Mobile Transactions�

8
123,255 eCommerce customers with >$0
 fraud in March 2014, by LexisNexis�

New Challenges &
 Opportunities

•  Centralized control
– Vet applications before they enter store
– Carriers may have more complete pictures of

 users and traffic
•  Apps are much easier to analyze statically

– Use of Dalvik bytecode instead of x86
•  Constrained environment

– CPU, memory, battery
– User perception

9

Problems and Our Solutions

•  Issues for existing mobile anti-virus systems
–  Easy to evade [DroidChamelon]
–  Unable to detect native malware [DroidNative]
–  Unable to detect malware in ads or dynamically loaded content

 [AdShield]

•  Privacy leakage detection and prevention
–  How to find questionable sensitive permissions [AutoCog]
–  Real time tracking & preventing privacy leakage on phone

•  Consumer [PrivacyShield]
•  Enterprise Mobility Management (EMM) [AppShield]

•  Fraud detection mostly with app-level risk management
 [DroidCog]
–  Duplicate detection
–  Privacy infringement

10

Systems Developed

•  AppsPlayground [ACM CODASPY’13]

– Automatic, large-scale dynamic analysis of Android
 apps

– System released with hundreds of download
•  DroidChamelon [ACM ASIACCS’13, IEEE Transaction on

 Information Forensics and Security 14]

– Evaluation of latest Android anti-malware tools
– All can be evaded with transformed malware
– System released upon wide interest from media and

 industry
11

12

Impact of DroidChamelon

12

Interest from vendors

System Developed: AutoCog�
Check whether sensitive permissions requested by
 apps are consistent with its natural-language
 description

�

13

Systems Developed: PrivacyShield

•  Real-time information
-flow tracking for privacy
 leakage detection

•  App instrumentation,
 with zero platform
 modification

•  App released in Google
 play and Baidu stores

14

ARE THESE ADS SAFE:
 DETECTING HIDDEN
 ATTACKS THROUGH MOBILE
 APP-WEB INTERFACES

15

Consider This…�

Downloaded'��������
�app�Faked'threat'report' Click'on'the'buHon��

The Problem

•  Enormous effort toward analyzing
 malicious applications

•  App may itself be benign
– But may lead to malicious content through links

•  App-web interface
–  Links inside the app leading to web-content
– Not well-explored

•  Types
– Advertisements
– Other links in app

17

Outline

App-Web Interface Characteristics

Solution

Results

Conclusion

18

Outline

App-Web Interface Characteristics

Solution

Results

Conclusion

19

App-Web Interface
 Characteristics

•  Can be highly dynamic
•  A link may recursively redirect to another

 before leading to a final web page
•  Links embedded in apps

– Can be dynamically generated
– Can lead to dynamic websites

•  Advertisements
– Ad libraries create links dynamically
– Ad economics can lead to complex redirection

 chains
20

Advertising Overview

21

Ad Networks

•  Ad libraries act as the interface between
 apps and ad network servers

•  Ad networks may interface with each other
– Syndication –
�����������(����(���������
�,�11�(���()�

– Ad exchange – Real-time auction of ad space

•  App or original ad network may not have
 control on ads served 22

Outline

App-Web Interface Characteristics

Solution

Results

Conclusion

23

Solution Components

•  Triggering: Interact with app to launch
 web links

•  Detection: Process the results to identify
 malicious content

•  Provenance: Identify the origin of a
 detected malicious activity
– Attribute malicious content to domains and ad

 networks
24

Solution Architecture

25

Triggering

•  Use AppsPlayground1
–  A gray box tool for app UI

 exploration
–  Extracts features from displayed UI

 and iteratively generates a UI
 model

•  A novel computer graphics-based
 algorithm for identifying buttons
–  See widgets and buttons as a

 human would
26

1Rastogi, Vaibhav, Yan Chen, and William Enck. "AppsPlayground: automatic security analysis of smartphone applications.”
In Proceedings of the third ACM conference on Data and application security and privacy, pp. 209-220. ACM, 2013.

Detection

•  Automatically
 download content
 from landing pages

•  Use VirusTotal for
 detecting malicious
 files and URLs

27

Provenance

•  How did the user come
 across an attack?

•  Code-level attribution
–  App code
–  Ad libraries

•  Identified 201 ad libraries

•  Redirection chain-level
 attribution
–  Which URLs led to attack

 page or content

28

Outline

App-Web Interface Characteristics

Solution

Results

Conclusion

29

Results

•  Deployments in US and China

•  600 K apps from Google Play and Chinese stores
–  �����������#) ���������(�C., ��	9�(����*
O1

•  1.4 M app-web links triggered

•  2,423 malicious URLs

•  706 malicious files
30

Case Study: Fake AV Scam

•  Multiple apps, one ad
 network: Tapcontext

•  Ad network solely
 serving this scam
 campaign

•  Phishing webpages
 detected by Google
 and other URL
 blacklists about 20
 days after we
 detected first
 instance

31

Case Study: Free iPad Scam

•  Asked to give personal
 information without
 any return

•  New email address
 receiving spam ever
 since

•  Origins at Mobclix and
 Tapfortap
–  Ad exchanges
–  Neither developers nor

 the primary ad networks
 likely aware of this 32

Case Study: iPad Scam from
 static link

•  Another Scam, this
 time through a
 static link
 embedded in app

•  Link target opens in
 browser and
 redirects to scam

•  Not affiliated with
 Facebook

33

Case Study: SMS Trojan Video
 Player

•  Ad from nobot.co.jp
 leads to download a
 movie player

•  Player sends SMS
 messages to a
 premium number
 without user consent

34
�1�)�����(�

Outline

App-Web Interface Characteristics

Solution

Results

Conclusion

35

Limitations

•  Incomplete detection
– Antiviruses and URL blacklists are not perfect
– Our work DroidChameleon2 shows this

•  Incomplete triggering
– App UI can be very complex
– May still be sufficient to capture

 advertisements

36

2Rastogi, Vaibhav, Yan Chen, and Xuxian Jiang. "Catch me if you can:
Evaluating android anti-malware against transformation attacks."
Information Forensics and Security, IEEE Transactions on 9.1 (2014):
99-108.

Conclusion and Ongoing Work

•  Benign apps can lead to malicious content
•  First large scale study to detect malicious ads

 on Android
•  Making it a 24 * 7 service
•  Working with ad network providers (e.g., Baidu

 and Google) and CNCERT for defense
•  Only the tip of iceberg, security issues on

 dynamic code loading (DCL)
– Detected malware and vulnerabilities that Google

 Bouncer missed
37

DROIDCOG: DEVICE-LEVEL
 MOBILE RISK MANAGEMENT�

38

Motivations�

•  The growing popularity of mobile payment
•  Attack surface of smartphone ! User’s

 financial loss
•  Countermeasure:

– G1: authentication, explicit
– G2: risk management, implicit/explicit

•  Heavy usage of user privacy (e.g., (!A#"-4/3)
•  Application-level: duplicate data, redundant detection

39

Goal�

•  A learning-based mechanism for user
 fraud detection
– Least user privacy required, high detection

 accuracy
– Device-level approach: only one copy of data

 is uploaded
– Robust, hard to evade

40

Goal�

41

Data preprocess

Training

C1 C2 … Classifiers

Decision

Server

…

Client

Periodical upload
Mobile payment vendors

Data collection

U1
Motion sensors

Data collection

U2
Motion sensors

Problem Statement�

42

Fingerprinting Bob’s
 usage manner�

Verify based on classification results�

Challenges �

•  Lack of features
•  Data availability
•  Imbalanced dataset
•  Noise surrounding
•  Unlabeled data�

43

Challenges �

•  Lack of features
– Only based on acceleration sensor and

 gyroscope sensor
– Feature selection (6 values ! 64 features)

•  Data availability
•  Imbalanced dataset
•  Noise surrounding
•  Unlabeled data�

44

Challenges �

•  Lack of features
•  Data availability

– Periodical data collection
– User activity detection

•  Imbalanced dataset
•  Noise surrounding
•  Unlabeled data�

45

Challenges �

•  Lack of features
•  Data availability
•  Imbalanced (classification) dataset

– Control of distribution of training set
– Random selection & stratified sampling

•  Noise surrounding
•  Unlabeled data�

46

Challenges �

•  Lack of features
•  Data availability
•  Imbalanced dataset
•  Noise surrounding

– Calibrate sensor data based on gravity direction
–  Identify user motion state: static or in motion?

•  Unlabeled data�

47

Challenges �

•  Lack of features
•  Data availability
•  Imbalanced dataset
•  Noise surrounding
•  Unlabeled data

– Semi-supervised online learning�

48

Data Preprocessing�

•  Filter useless data on client side
– The device is put on a flat plane

•  Identify motion state on server
– Each motion state has one corresponding

 classifier trained�

49

Training Set Construction�

•  Resolve the issues of imbalanced dataset
•  The data samples from other users are

 representative
•  Preserver the temporal continuity
•  Random selection v.s. stratified sampling

– Similar performance
– No cost of grouping user data for random

 selection�

50

Owner Other users

Random selection Stratified sampling

…Group 1

Group 2
Group 3

ML Algorithm Selection�

•  Expectation Maximization (EM): slow
•  J48 decision tree: training set over fit,

 extra cost of tree pruning
•  Logistic regression: cannot handle non

-linear boundary
•  We use SVM

– Fast, handle non-linear classification
 boundary�

51

Semi-supervised
Online Learning�

52

Old classifier

New classifier

TestTraining
New data

Online learning

Validation

Performance
drop? Yes

Rollback

No
Commit

Preliminary Evaluation�

•  Data
–  Collected with “Phone manager” ('+M%) by Tencent
–  1st batch dataset: 210 users
–  2nd batch dataset: 1516 users

•  Metrics
–  Accuracy

•  True positive: owner is correctly identified
•  False positive: other is incorrectly identified as owner
•  False negative: owner is incorrectly identified as other
•  True negative: other is correctly identified
•  Rowner = TP/(TP+FN), Rother = TN/(TN+FP)
•  ROC curve

–  Overhead
–  Robustness � 53

Accuracy�

•  80 users with full data; each user has 4K
 samples in training set and 1.2K samples in test
 set.�

54 Rother: 86.44%� Rowner: 75.50%�

Overhead�

•  Upload traffic
– Around 300KB each time, compressed to

 90KB. �
•  Latency (average over 210 users)

55

#Samples in training
set�

Training time (s)� #Samples in test
set�

Test time (s)�

13203� 18.415� 52065� 0.639�

Robustness�

•  Brute-force attack
– The classifier model for each authorized

 owner is pre-trained
– A set of 500K randomly generated samples
– Percentage of samples detected as non

 owner: 94.01%

56

Robustness�

•  Human attack
– A pre-trained classifier for the owner
– 3 participants handle the phone with various

 gestures
– Each participant lunches 10 attacks
– Each attack last for 10 seconds
– Percentage of samples detected as non

 owner: 93.84%

57

ROC Curve�

•  True positive rate v.s. False positive rate
– TPR = TP/(TP+FN), FPR = FP/(FP+TN)
– Changes the classification threshold (0-1)�

58

Conclusion and Ongoing Work�

•  DroidCog: The first device level user
 identification system with wild collected sensor
 data

•  Deploy detection system on the phone
•  Improve the classification accuracy

– Explore more usable but privacy insensitive
 features (e.g. widely used IP address)

•  Combine with existing risk management
•  Theme of RSA 2016: Connect to Protect� 59

•  Issues for existing mobile anti-virus systems
–  Easy to evade [DroidChamelon]
–  Unable to detect native malware [DroidNative]
–  Unable to detect malware in ads or dynamically loaded content

 [AdShield]

•  Privacy leakage detection and prevention
–  How to find questionable sensitive permissions [AutoCog]
–  Real time tracking & preventing privacy leakage on phone

•  Consumer [PrivacyShield]
•  Enterprise Mobility Management (EMM) [AppShield]

•  Fraud detection mostly with app-level risk management
 [DroidCog]
–  Duplicate detection
–  Privacy infringement

60

Summary
http://list.cs.northwestern.edu

