Automatically Detect Flaws in Cloud
Platforms and System Software

Kang Li
Department of Computer Science
University of Georgia

About Me
» @ UGA

Faculty of Computer Science

Leading the Security Research Cluster

» Beyond UGA

Frequent BlackHat and ShmooCon Speaker
Founder of the disekt CTF Team

MOtivatiOl’l fOI' AUtOmatiOl’l (analysis, offense/defense)

|. Demand from Software Practice

2.The (in)Balance of “Hacking” Power

Demand from SW practice

» Sample High Profile Victims in the News

g O

soNY MA@ TARGET.

PICTURES

Golden Age of Bugs!

» High Profile Vulnerabilities

Heartbleed (4/2014), ShellShock (9/2014),
POODLE (12201 4) GHOST (4/2015)

1.

Demand from SW practice

» We (& the whole SWV industry) are generating so many
bugs, that the Onion made the following “news” when
China announce to abandon One-Child Policy in October 201 5:

Demand from SW practice

» We (& the whole SWV industry) are generating so many
bugs, that the Onion made the following “news” when
China announce to abandon One-Child Policy in October 201 5:

& C' || www.theonion.com/article/china-unable-recruit-hackers-fast-enough-keep-vuln-51719

=— MENU @ the ONION China Unable To Recruit Hackers Fast Enough To Keep Up With Vulnerabilities In U.S. Security Syste =~ SEARCH Q I

China Unable To Recruit Hackers Fast Enough To
Keep Up With Vulnerabilities In U.S. Security Systems

NEWS IN BRIEF ¥ L | , R
gl . ‘
October 26, 2015 728 { % S | " \ e ¢ ONION VIDEO
- / 4 4 . e
VOL 51 ISSUE 43 ' & | By - (
" d

News - Technology - World -
China

MOtiV&tiOl’l fOI’ AUtOmatiOl’l (analysis, offense/defense)

|. Demand from Software Practice

2.The (in)Balance of “Hacking” Power

The (in)Balance of “Hacking” Power

Year 1st From 2nd From 3rd From
2002 |Digirev USA Immunix USA BrownTeam USA
2003 |Anomaly USA Digirev USA Immunix USA
2004 (Sk3wlOfrO0 USA IronGrep USA MOCYLIB USA
2005 |Shellphish USA PlanB USA Sk3wl0frO0t USA
2006 |l@stplace USA Shellphish USA Sk3wl0frO0t USA
2007 |[1@stplace USA Sk3wl0fr00t USA SongofFreedon USA
2008 (Sk3wlOfrO0 USA Routards France 1@stplace USA
2009 |VedaGodz USA Routards France PLUS@postech South Korea
2010 |(ACME Phar USA Routards France GoN South Korea
2011 (Nopsled Denmark Routards France Hates Irony USA
2012 |Samurai USA PPP USA NopSled Denmark
2013 |PPP USA ManInBlackH USA RAON_ASRT South Korea
2014 (PPP USA HITCON TAIWAN Dragon Sector Poland
2015 |DEFKOR South Korea PPP USA Odaysober France/SZ

TOP 3 CTF Teams in DEFCON CTF Finals

CTF will be Played by Machines

DARPA Cyber Grand Challenge

http://cybergrandchallenge.com/

C

Ibv

" CYBER

M GRAND CHALLENGE

A tournament for fully automated network defense

DARPA Cyber Grand Challenge

www.cybergrandchallenge.com Selai

€

ATHENS, GA
disekt - Athens, GA
Ranked 4 in the First Scored Event

TEAMS

Below are the 7 top-ranking teams from
the First Scored Event that occurred on

12/02/14 in rank order. Please note that
the teams in 3rd and 4th place are tied:

1. Deep Red [Open Track]

2. CSDS [Open Trackl]

3,4. Shellphish and disekt [Open Track]
5. ForAllSecure [Funded Track]

6. Codejitsu [Funded Track]

7. TechXicians [Funded Track]

Ib«

s CYBER

GRAND_CHALLENGE

C

Contact | Legal | DARPA ’

Other Success Example (Chess Master)

Competition
Ratmg A Deep Blue 2
2800 1
a World Champion i
. Deep Blue
Thought ﬂ
. Grand Master 1 Deep Thought 2
4 Senior Master 2400 Chess 4.5
¥ Master i Cray Blitz
1970: First ﬁ
2200 all-computer
¥ Expert tournament Belle
I 11977: NWU-Chess — Grandmaster Michael Stean defeated by a computer
2000 !

<)

1 I
1800 [1 1970 to 1977:
: ﬁ | An innovation explosion through
ﬂ | Chess4.0 1 Mmeasurable dominance:
1600 l I+« Chess hash tables
MacHackVI | |« Iterative deepening Key
- |+ Bitboards | ot Severl
1400 ' I« Opening books Sl P
~ : |+ Endgame databases I Vardware
0 ' : >
1965 1975 1985 1995 2005

Data Source: Computer History Museum

asR [COve.come CrSiony g ERQUICES/ SUL-IMagE K
Images/5.12.%20Chess_Raung_Cnart.Lo62303076.j5G

Source: Mike Walker’s presentation at the ISSTA 2014 conference

Can MaChine DO It (auto analysis, offense/defense)?

Example: CrackMe Challenges

Name | AAAAAAAA

Key 1 | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALAAAAALAAA
AAAL

! E Incorrect NamejKey pair. Try again.

.................................

EXIT

]

- [Emaviewa | [[E rseudacode-s [| B Hex view-1 [] | [R]
INT PTR _ stdcall DialogFunc(HWND hDlg, UINT

Can Machine Do It (auto analysis, offense/ defense)?

Example: CrackMe Challenges

{

LPUDID vh; ff esi@?
unsigned int v5; /7 ecx@2

if

{

¥

hl
hl
d
.
d!
u!
*
ql
|

Graphoverview

——

% Warning E

Decompilation Failure:
! 40120E: call analysis Failed

Please refer to the manual to find appropriate actions

ok |

[Don't display this message again (For this session anly)

YBxC8, (LPCSTRY®xA);
) :

pcsInfo);

0 4858BB + 4);

else if (a2 == 273)

DDDDD4E4|DialngFunc:lE

=

I

Symbolic Execution

» Execution with Concrete values

Input
value = OxDEADBEEF

update_RA (int value) Output
{ R, = OxO000BEEF;

R, = value & O0x0000FFFF;

Code Snippet

return R,
] » Execution with Symbolic values

Input

value = &
o Output
Ry, = & & O0xO0000FFFF;

Symbolic Execution with Branches

» Possible Execution Paths

Fork Execution

Code Snippet

True False
update RA (int value)
{
if (value > 0)
R, = value;
else |
>0 o <=0
R, = value & O0x0000FFFF;
and and
return R, R=u ‘ R,= o &OxFFFF ‘

Can We Do It (auto analysis, offense/ defense)?

Solving CrakeMe with Symbolic Execution

Progress of Auto Program Analysis

» Detection of Well-defined Vulnerabilities

Static & Dynamic Checking for Properties
E.e. Memory Access Out of Bound

Rich Set of Prior Research Results/Tools
KLEE, BitBlaze, Mayhem, S2E, ...

Property Checking

» Possible Execution Paths

Fork Execution

Code Snippet

True False
update RA (int value)
{
if (value > 0)
R, = value;
else
>0 o <=0
R, = value & O0x0000FFFF;
and and
return R, R=u R,= o &OxFFFF
}

» Does the following condition hold for all possible input!?

Property Checking

For each path,
solving the constrain

1(R,>=0) && (Path Condition)

True

Fork Execution

False

a >0
and
R=«

a <=0
and
R,= o &OxFFFF

Property Checking

For the early example, the constraints to solve are:

1(R>=0) && (>0 &&R =)
(R >=0) && (<=0 &&R = o &OxFFFF)

No solution means the following statement holds

Applying Symbolic Execution

» Detection of Well Defined Vulnerabilities

Manually define rules to check

E.e. memory access out of bound, double free on the same path

» Detection of Flaws in VMs and Embedded Firmware

Checking for specification violation
Cloud/VM Platform Implementations

Firmware (Bootloader) Implementations

Applying Symbolic Execution

» Detection of Well Defined Vulnerabilities

Manually define rules to check

E.g. memory access out of bound, double free on the same path

» Detection of Flaws in VMs and Embedded Firmware

Checking for specification violation
Cloud/VM Platform Implementations

Firmware (Bootloader) Implementations

Applying Symbolic Execution

» Detection of Well Defined Vulnerabilities

Manually define rules to check

E.g. memory access out of bound, double free on the same path

» Detection of Flaws in VMs and Embedded Firmware

Checking for specification violation
Cloud/VM Platform Implementations

Firmware (Bootloader) Implementations

» Challenges to Automation
What property (predicates/invariants) to check!?

How to handle incomplete programs!?

Cloud and Virtual Machines

£ Control Panel

Action View Help

-= m & 2 A

ﬂ Computer
[+ Disk drives
= § Display adapters
§ Cirrus Logic 5446 Compatible Graphics Adapter
- % DVDJCD-ROM drives
[+-{=) Floppy disk controllers
3 Floppy disk drives
=) IDE ATAATAPI controllers
&) Intel(R) 8237158 PCI Bus Master IDE Controller
&) Primary IDE Channel
=) Secondary IDE Channel
=-<» Keyboards
“p» Standard 101/102-Key or Microsoft Natural P52 Keyboard
[+~ ") Mice and other pointing devices
§ Monitors
H8 Network adapters
B8 Intel(R) PROS1000 MT Network Connection
5 Ports (COM&LPT)
| Processors
@, sound, video and game controllers
= g System devices
¢ ACPI Fixed Feature Button
High precision event timer
Intel 8237158 PCI to ISA bridge

f !‘.> 'l"'“tf.’l"“‘r‘ll-~’
' r._,--".._."-'...
"A.-.'A '

1s Start # Control Panel

e e -

- g - . .
P RO M G B prevrs
Tt o
N T a——
. ————

&) Wt

S M ¢ 3300 M7 androéd-x86-2.3-
R Yo | | RC1woepe

o m—

st IS I

Examples of Virtual Hardware Devices

T Cirrus Logic 5446 Compatible Graphics Adapter Prop...

File Edit View

' General | Driver | Details | Resources |

File Action View Help

-= m & 2 A

ﬂ Computer

% Cirrus Logic 5446 Compatible Graphics Adapter

Resource settings:

[+ j Floppy disk drives
=1-{= IDE ATA/ATAPI controllers
&) Intel(R) 8237158 PCI Bus Master IDE Controller
&) Primary IDE Channel
=) Secondary IDE Channel
=-<» Keyboards
“p» Standard 101/102-Key or Microsoft Natural P52 Keyboard
[+~ ") Mice and other pointing devices
+ § Monitors
=]
B8 Intel(R) PROS1000 MT Network Connection
3] ,'_:y Ports (COM & LPT)
+- %98 Processors
#+- @, sound, video and game controllers
= g System devices
'3 ACPI Fixed Feature Button

Resource type Setting
¥ Memory Range FCO0000O - FDFFFFFF

Intel{R) PRO/1000 MT Network Connection Properties

2

| Teaming | YLANs | BootOptions | Driver | Detalls | Resources | |,
General | Link Speed | Advanced | PowerManagement

High precision event timer
¢ Intel 823715B PCI to ISA bridge

‘s start g Control Panel L, Device Manager

W Intel(R] PROA1000 MT Network Connection

Device type: MNetwork adapters
Manufacturer: Intel

Location: PCI Slot 3 [PCI bus 0, device 3, function 0)

Recent VM Vulnerabilities) Cloud

v Computing
oct, 2014

Security bug in Xen may have exposed
Amazon, other cloud services [Updated]

Flaw in hypervisor could let malicious VM read data from or crash other servers.

— PN

by Sean Gallagher - Oct 1, 2014 10:49am EDT

March, 2015 New Xen vuln triggers Amazon, Rackspace
reboot panic redux

Second hypervisor-related cloud meltdown in six months

-

Image & Text Source: http://www.theregister.co.uk/

Assumptions on Virtual Machine

» Software (drivers and OS) makes assumptions about
hardware behavior.

» Virtual hardware does not behave exactly like
Physical hardware.

» Such inconsistencies could lead to unexpected
software failures, and some flaws could be fatal and
exploitable by attackers.

Address the Challenge of “What to Check”

» The ldea:
Check virtual HWV device against its physical peer
=» Behavior Comparison (“Model Checking”)

» Actions:

Find the physical device (which the virtual device is based on)

Capture behavior of device under physical HWV and virtual
device, and compare them.

Address the Challenge of “What to Check”

» Detect virtual hardware behaviors that diverge from
specification

» Focus on behaviors visible to Software

Do the hardware registers and memory contain the correct
values during operation?

What can be observed

» The behavior of a HWV device is defined by its registers
and how registers respond to I/O events.

Full visibility at design time

But limited visibility on physical device (after manufacture)

» Observed by Capturing Traces (of events and dev states)

T R

HONt OF Trace: pyant: mmio_write(reg, value)

Capture . Device State: [R,,R,,...,R\]

—— SDOtV Event: mmio_read(reg)

tate . .

Trace Device State: [R,,R,,...,R\]
Event: mmio_write(reg, value)
Device States: [R,R,,...,R\]

Physical Machine ,

Example of Capturing HW Behavior

Spec: Reg-A is a mask register for Reg-B.
An update to A causes B to change to Vg&~V,

Reg-A 0x00000000
Reg-B OXFFFFFFFF

HW before I/O event

Example of Capturing HW Behavior

Spec: Reg-A is a mask register for Reg-B.
An update to A causes B to change to Vg&~V,

I Reg-A OxFFFFO000

Reg-A 0x00000000 mmio_write
Reg-B OXFFFFFFFF (A, OxFFFF0000) Reg-B 0x0000FFFF

HW before I/O event HWV after I/O event

Example of Capturing HW Behavior

Spec: Reg-A is a mask register for Reg-B.
An update to A causes B to change to Vgz&~V,

| Reg-A OxFFFFO000

Reg-A 0x00000000 mmio_write
Reg-B OXFFFFFFFF (A, OxFFFF0000) Reg-B Ox0000FFFF

HW before I/O event HWV after I/O event

Reproduce the above operation
using the virtual device

Example of Capturing HW Behavior

Spec: Reg-A is a mask register for Reg-B.
An update to A causes B to change to Vgz&~V,

‘ Reg-A OxFFFFO000

Reg-A 0x00000000 mmio_write
Reg-B OXFFFFFFFF (A, OxFFFF0000) Reg-B 0x0000FFFF

HW before I/O event HWV after I/O event

Reproduce the above operation
using the virtual device

Reg-A 0x00000000 | W) | Reg-A OxFFFF0000

Reg-B OxFFFFFFFF mmio_write Reg-B OXFFFFFFFF
= (A, OxFFFF0000) -5

vDevice before I/O event vDevice after I/O event

Example of Capturing HW Behavior

Spec: Reg-A is a mask register for Reg-B.
An update to A causes B to change to Vgz&~V,

=

Reg-A 0x00000000 mmio_write
Reg-B OxFFFFFFFF (A, OxFFFF0000)

Reg-A OxFFFFO000
Reg-B 0xO000FFFF

HW before I/O event HWV after I/O event

Reproduce the above operation

using the virtual device Inconsistency

Found!

Reg-A 0x00000000 | W) | Reg-A OxFFFF0000

Reg-B OxFFFFFFFF mmio_write Reg.B OXFFFFFFFF
= (A, OxFFFF0000) -5

vDevice before I/O event vDevice after I/O event

HW Behavior Capturing (In Reality)

» Dump and replay only works in simple cases

» Not all physical registers are observable (readable)
» Some events are difficult or “expensive” to observe

» Some registers are accessible, but have side effects

Symbolic Behavior Testing

» How to handle partially observable states?

» Our approach to deal with unobservable registers
Construct the virtual device state by setting
observable register values based on the trace

missing registers with symbolic values

Symbolic Register Values

» Example:

For a simple device with only 2 registers:

R, (observable) and Ry (unobservable)
The device state in a trace looks like this: [R,== OxFFFFO000]

Setting Virtual Device
R, OxFFFFO000 State based on Trace

Ry unobservable ||—

Captured State Virtual Device State

R, OxFFFFO000
Ry alpha

How to Run with Symbolic Values?

» Consider the following
virtual device program:

Virtual Device Code Snippet

mmio_write_update RA (value)
{
if (R, ==0)
R, = value;
else
R, = value & 0x0000FFFF;

How to Run with Symbolic Values?

» Consider the following

. . R, OxFFFF0000
virtual device program:

+ Eventl:
write (R,,

Virtual Device State OxCOFFEE)

Ry alpha

Virtual Device Code Snippet

mmio_write_update RA (value)
{ Suppose we have the above
if (R, ==0) initial state and a given event
R, = value;
else
R, = value & 0x0000FFFF;

How to Run with Symbolic Values?

» Consider the following

. . R, OxFFFF0000
virtual device program:

+ Eventl:
write (R,,

Virtual Device State OxCOFFEE)

Ry alpha

Virtual Device Code Snippet

mmio_write_update RA (value)
{ What will the virtual device
if (R, ==0) state be after Event I?
R, = value;
else
R, = value & 0xO000FFFF;

Symbolic Execution

» Consider the following

. . R, OxFFFF0000
virtual device program:

R, alpha + Eventl:

write (R,,
Virtual Device State OxCOFFEE)

Virtual Device Code Snippet

mmio_write_update RA (value)

{ if (R, == 0) If (alpha == 0)
R, = value; Transaction #|
else
R, = value & 0x0000FFFF;
} R, O0xOOCOFFEE

Ry alpha==0

Virtual Device State

Symbolic Execution

» Consider the following
virtual device program:

Virtual Device Code Snippet

mmio_write_update RA (value)
{
if (R, ==0)
R, = value;
else
R, = value & O0x0000FFFF;

R, OxFFFF0000

R, alpha + Eventl:

write (R,,
Virtual Device State OxCOFFEE)

If (alpha == 0) If (alpha != 0)
Transaction #1 Transaction #2

R, 0xO0COFFEE

R, OxOOOOFFEE

Ry alpha==0 Ry alpha!=0

Virtual Device State Virtual Device State

Searching for Inconsistencies

Given this Captured Trace:

Device State: [R,== OxFFFFO000]

Event |: mmio_write (R, OxCOFFEE)
Device State: [R,== OxFFEE]

» Does one of the output
virtual device states
match the captured
device state!

R, OxFFFF0000

+ Eventl:
Rx_alpha write (R,
Virtual Device State OxCOFFEE)
If (alpha == 0) If (alpha != 0)
Transaction #1 Transaction #2

R, 0xO0COFFEE

R, Ox0000FFEE
Ry alpha!=0

Ry alpha==0

Virtual Device State Virtual Device State

Searching for Inconsistencies

Given this Captured Trace:
R, OxFFFFO000

Device State: [R,== OxFFFFO000] + Eventl:
Rx_alpha write (R
Event |: mmio_write (R, OxCOFFEE) 0 COFFEI’E
Device State: [R,== OxFFEE] Virtual Device State)
» Found a match, continue If (alpha == 0) If (alpha '= 0)
Transaction #| Transaction #2

with the Transaction.

R, 0xO0COFFEE
Ry alpha==0

. R, OxO000FFEE
» If multiple matches found, ’ '

follow each one.

Virtual Device State Virtual Dev

Searching for Inconsistencies (cont.)

Given this Captured Trace: Follow from previous transaction

Device State: [R,== OxFFFFO000]

Event |: mmio_write (R, OxCOFFEE)
Device State: [R,== OxFFEE] R, OxO000FFEE | Eventll:

write (R ,, 0xO0BEEF00
Event Il: mmio_write (R, 0xO0BEEF00) Ry alpha!=0 R '
Device State: [R,== OxBEEFOO]

Virtual Device State

» Checking a trace with consecutive events

Searching for Inconsistencies (cont.)

Given this Captured Trace: Follow from previous transaction

Device State: [R,== OxFFFFO000]

Event |: mmio_write (R, OxCOFFEE)
Device State: [R,== OxFFEE] R, OxO000FFEE | Eventll:

— write (R ,, 0xO0BEEF00
Event Il: mmio_write (R, 0xO0BEEF00) Ry alpha!=0 R '
Device State: [R,== OxBEEFOO]

Virtual Device State

» Checking a trace with consecutive events

R, O0x0000EFO0

» No candidate match =2 Inconsistency Ry alphal!=0
Found! Virtual Device State

Detect Misbehaving Transactions

.
A Test Case (Traces of Device Possible Symbolic Execution Path
@ State Changes (Transactions) from Virtual Hardware

Ny

(Guest OS W e /o
Software Event & state Evt [1] Evt [1] N[O] I/O
}D\riverS) J Capture Evt [1]
— — GCEPIEGTD

—) e /O Evt [2
Virtual Device Evt [2] O Evt[2] /0 Evt 2] /O Evt [2]
Physical
Machine ‘oo

Results

» Evaluation

Use devices with well-tested virtual machines
QEMU/KVM virtual hardware devices

Focus on Network Interface Cards (NICs)
Intel EEPRO 100, E1000, X540
Broadcom BCM5751

» How to tell virtual vs. physical HWV errors?
Specification

Hardware Errata

Example of Virtual HW Error (e1000)

» Test Event Sequence
MMIO writes to set the NIC MTU limit and receive queue tail,

Send a jumbo Ethernet frame to the NIC

» Inconsistent values
RLEC @ (0x04040 - Receive Length Error Count
PRC @ (0x0405C - Packets Received ([64-1522] Bytes) Count
BPRC @ (0x04078 — Broadcast Packets Received Count
MPRC @ (0x0407C — Multicast Packets Received Count
GPRC @ (0x04074 - Good Packet Received Count

Inconsistencies resulted from a virtual hardware bug

Reported to Redhat (QEMU) and confirmed as a severe bug.

Summary

» Security of Virtual Machines and Cloud Platforms

Verify Virtual Machine Implementation

Compare virtual and physical hardware.

Verify Hardware Behavior after Manufacture

Dynamic Behavior Comparison

» Auto SW Vulnerability Scan and Flaw Finding

Critical Errors are not limited to traditional SVV security bugs
Logical errors

Need more “Model” checking

I's only a matter of time.

http://oddnews.cosmobc.com/2010/05/18/skynet/

Thanks for your time!

