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About Me

• Postdoc at CISPA Helmholtz Center i.G. working with 
Michael Backes


• From January 2019, research group leader at CISPA 
Helmholtz Center for Information Security


• Data privacy


• Biomedical data, machine learning models, social 
network


• Ph.D. positions and summer interns available
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CISPA-Stanford Program

• https://www.cispa-stanford.org/


• Elite scholar program for doctors


• 1 or 2 years at CISPA


• 2 years at Stanford University as a visiting professor


• 3 years at CISPA as a research group leader


• Drop me an email if you are interested
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https://www.cispa-stanford.org/


The Advancement of ICT
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Privacy!!!
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Outline

• Social network privacy


•Machine learning privacy
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Outline

• Social network privacy


•Machine learning privacy
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Social Network Privacy

• In basic setting, users


• Articulate their personal attributes and their social 
relations -> many attacks exist


• De-facto way for communication


• Texts, images… -> some attacks exist


•Cooler information


• Location check-in, hashtags… -> privacy?
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Social Network Privacy

• Location check-in to infer social relation


•walk2friends: Inferring Social Links from Mobility 
Profiles (CCS 2017)


•Hashtag to infer location


• Tagvisor: A Privacy Advisor for Sharing Hashtags 
(WWW 2018)
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Social Network Privacy
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•walk2friends: Inferring Social Links from Mobility 
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Location Check-in
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Location Check-in
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Location Privacy

• 4 spatial-temporal points can identify 95% of the 
individuals


•Mobility traces can be effectively de-anonymized


• You are where you go


• Demographics


• Social relations
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Social Relation is Private?

• Social relations can be sensitive, e.g., office romance


• 17.2% -> 56.2% (Facebook users in New York)


•NSA’s co-traveler program
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Research Question
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Can two users’ check-ins be used to predict their social relations?



Existing Approach

• Solution 1: common locations two users have visited


• Almost all data mining approaches take this way


• Location entropy


•Can’t work when two users share no common 
locations
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Existing Approach

• Solution 2: mobility profiles/features


• Summarize each user’s mobility profiles


• Friends share similar mobility profiles than strangers


• Feature engineering


• Tedious efforts and domain expert knowledge


• Time consuming
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Every Single Time!!!



Representation Learning

• Learning features (representation/deep learning)


• Follow a general object (unsupervised)


•Graph representation learning (graph embedding)


• Preserve each user’s neighbors in a social network


•Mobility feature learning
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walk2friends

• Assumption: A user’s mobility neighbors can reflect 
her mobility profile/features


1. Define each user’s mobility neighbors


2. Learn mobility features/profiles


3. Infer two users’ social relation
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Mobility Neighbor

• A user’s mobility neighbors include


• Locations a user has visited


•Others who have visited similar locations and their 
locations


• Breadth first search


•Not considering the visiting frequencies


• Random walk sampling
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Mobility Neighbor
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Mobility Feature Learning
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• Learn a function:


• Each node to predict it’s neighbors


•                       Softmax

argmax p( | ; ✓)·p( | ; ✓)·p( | ; ✓)·
p( | ; ✓)·p( | ; ✓)·p( | ; ✓)·p( | ; ✓)·

p( | ; ✓)· p( | ; ✓)·p( | ; ✓)·p( | ; ✓)·
p( | ; ✓)· p( | ; ✓)·
p( | ; ✓)· p( | ; ✓)·p( | ; ✓)·p( | ; ✓)·
p( | ; ✓)· p( | ; ✓)·p( | ; ✓)·p( | ; ✓)

✓

p( | ; ✓)· ·



Social Relation Inference
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s( , ) = 0.9

s( , ) = 0.8

s( , ) = 0.6

s( , ) = 0.4

s( , ) = 0.3

s( , ) = 0.2

• Cosine similarity

• Unsupervised

• Predict any social relation



Dataset

• Instagram users’ check-ins


•New York, Los Angeles and London


• Foursquare (location semantics)


• Social relations (two users follow each other)


• Dataset available!
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Evaluation
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Defense

•Hiding


• Delete certain proportion of check-ins


• Replacement


• Random walk to replace locations
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Defense

•Generalization


•Geo-coordinate and location semantics


•MoMA -> art (40.76N, -73.97W)


• Recover location first


• art (40.76N, -73.97W) -> MoMA or Tom Otterness 
Frog?
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Utility Metric

• Each user’s check-in distribution


• Both original and obfuscated


• Jensen-Shannon divergence


• Average over all users
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Defense
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Defense
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Defense
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Summary on Walk2friends

• A novel social relation inference attack with mobility profiles


• Unsupervised and predict any social relations


• Outperforms baseline models


• Three general defense mechanisms


• Replacement and hiding outperform generalization
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Social Network Privacy

• Location check-in to infer social relation


•walk2friends: Inferring Social Links from Mobility 
Profiles (CCS 2017)


•Hashtag to infer location


• Tagvisor: A Privacy Advisor for Sharing Hashtags 
(WWW 2018)

 39



#hashtag
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#hashtag
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#hashtag
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#hashtag
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#hashtag
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#like4like

#foodporn

#tbt



#hashtag
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#privacy

#locationprivacy



Research Question
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Can hashtags a user shares be used to infer her location?



Tagvisor

• Attack: location inference with hashtags


• Defense: Tagvisor, a privacy advisor to mitigate the 
privacy threat by hashtags
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#dataset

•Collected through Instagram’s APIs


•New York, Los Angeles, and London


•Hashtags + locations (check-ins)
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#attack
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• Bag-of-words for feature representation 

• Random forest classifier 

• Multiple-class classification, e.g., 498 classes (locations) in New York 

• All posts are trained together

[1, 1, 1, 0]

[0, 1, 1, 0]

[1, 0, 0, 1]

#a#b#c

#b#c

#a#d



#attack
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#attack
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#tagvisor
• A privacy advisor for sharing hashtags


• Fool the attacker’s location inferencer (ML classifier)


• Three defense mechanisms


• Hiding


• Replacement


•Generalization (location category)


• Utility: preserving the semantical meaning of hashtags
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#hiding
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hide #a

hide #b

hide #c

successful attack

delete one hashtag (can be more)

#a#b#c

#b#c

#a#c

#a#b



#utility
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• Semantical meaning 

• Skip-gram, aka word2vec 

• Skip-gram over all posts’ hashtags

#a: [3.1, 1.3]
#b: [2.5, 1.9]
#c: [4.0, 5.1] #a

#b

#c

#a#b#c
#a#c

#a#b

Hashtag vectors
d1 d2

d1

d2

#a#b#c
#a#c

#a#b



#replacement
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• Replace each hashtag with all the possible hashtag 

• Search space is very large 

• Bound to the most closest hashtags (with word2vec) 

• Reduce the search space 

• Semantical meaning can be preserved

successful attack #a#b#c



#generalization

• Location category from foursquare


• #centralpark -> #park


• Do not apply to all hashtags


• e.g., #tbt #love
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#tagvisor

•Check whether the post’s location is inferred correctly


• If no, then publish


• Else, consider the three defense mechanisms


• Pick the hashtag set with the highest utility
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#tagvisor
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Obfuscating 2 hashtags is enough!

Obfuscating bounded number of hashtags



Summary on Tagvisor

• First location inference attack with hashtags


• Sharing hashtags is not safe!!!


• A privacy advisor to mitigate this risk


•Minimal risk and maximal utility


• Fit for the real-world setting

 59



Outline

• Social network privacy


•Machine learning privacy
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Machine Learning
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ML Security and Privacy

•Many ML models are used in critical infrastructures


•ML models are trained on sensitive data


• Biomedical data, emojis (Apple’s differential privacy)


• Largely overlooked

 62



Research Question

 63

Does an ML model trained on privacy-sensitive data 
leak information of the data? 

ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses  
on Machine Learning Models (to appear in NDSS 2019)



Membership Inference

• Determine whether a data point is inside something


• Biomedical data, case and reference group


• Location data, NDSS 18’


•Machine learning models


•Oakland 17’


•One of the most “popular” attacks in the community
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ML Routine

 65

ML model

Get some data Train the model

0
20
40
60
80

cat dog panda



Membership Inference
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ML model

Get some data Train the model

0
20
40
60
80

cat dog panda



Membership Inference

•Why membership matters?


• A cliché example: a ML model for medical diagnosis, if 
a person is in the training set, then she has the 
corresponding disease


• Security implications, IP implications
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Threat Model
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0
20
40
60
80

cat dog panda

Target  
Model



Attack by Shokri et al.
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Our Attack 1

•One shadow model


•One attack model


• Same data distribution
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Attack 1
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Our Attack 1
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Our Attack 2

Can we do better?


•No assumption on the dataset


• Data transferring attack


• Train shadow model on a different dataset, and attack 
on the target model
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Attack 1
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Attack 2
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Our Attack 2
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Sounds Magic, Why?
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Attack 3

Can we do better?


•Get rid of the shadow model


• Take the maximum, std, or entropy of the posterior as 
the score


• The simplest attack


•Unsupervised


• Reason: overfitting

 78



Attack 2
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Attack 3
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Attack 3

Unsupervised attack


1. Statistical measures over posterior


•Maximum, Std, Entropy


2. Decide a threshold for the attack 


•  Above ??% maximal posterior is member
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Attack 3
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Threshold Picking
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All Together
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Defense

• Dropout


•Model stacking
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Model 1 
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Defense
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Summary of ML-Leaks
•Machine learning models suffer from security and privacy attacks


•Membership inference


• Three attacks with weak attacker assumption (more practical)


•How to evaluate a machine learning model?


• Accuracy is enough?


• Security and privacy matter


•…. Just like buying a car


• A very promising direction for our research community!
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Summary

• Social Network Privacy


•walk2friends


• Tagvisor


•Machine Learning Privacy


•ML-Leaks

 88

Thank you for your attention! 
Questions? 

http://yangzhangalmo.github.io/ 
@yangzhangalmo 

yang.zhang@cispa.saarland

• Ph.D. positions and summer 
interns at CISPA 

• CISPA-Stanford Program

http://yangzhangalmo.github.io/
mailto:yang.zhang@cispa.saarland

