
Xede: Practical Exploit Early Detection

Meining Nie1, Purui Su1,2(B), Qi Li3, Zhi Wang4, Lingyun Ying1,
Jinlong Hu5, and Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory,
Institute of Software, CAS, Beijing, People’s Republic of China

purui@iscas.ac.cn
2 State Key Laboratory of Computer Science,

Institute of Software, CAS, Beijing, China
3 Tsinghua University, Beijing, China

4 Florida State University, Tallahassee, USA
5 South China University of Technology, Guangzhou, China

Abstract. Code reuse and code injection attacks have become the
popular techniques for advanced persistent threat (APT) to bypass
exploit-mitigation mechanisms deployed in modern operating systems.
Meanwhile, complex, benign programs such as Microsoft Office employ
many advanced techniques to improve the performance. Code execu-
tion patterns generated by these techniques are surprisingly similar to
exploits. This makes the practical exploit detection very challenging,
especially on the Windows platform. In this paper, we propose a practi-
cal exploit early detection system called Xede to comprehensively detect
code reuse and code injection attacks. Xede can effectively reduce false
positives and false negatives in the exploit detection. We demonstrate
the effectiveness of Xede by experimenting with exploit samples and
deploying Xede on the Internet. Xede can accurately detect all types of
exploits. In particular, it can capture many exploits that cannot be cap-
tured by mainstream anti-virus software and detect exploits that fail to
compromise the systems due to variations in the system configurations.

Keywords: Exploits · Code injection · Code reuse · ROP · Detection

1 Introduction

Advanced persistent threat (APT) is a stealthy, continuous, and targeted attack
against high-value targets, such as enterprises and government agencies. It is
often motivated by major financial or political reasons. There are a stream of
recent infamous attacks that cause vast consumer data breach and other dis-
astrous consequences [4–6]. APT has since become a major security concern to
these organizations. APT often employs zero-day (or recently-disclosed) vulner-
abilities in popular programs, such as Microsoft Office, Internet Explorer, Adobe
Flash, and Adobe Acrobat [37,40], to penetrate the defenses of its target. Tra-
ditional signature-based (black-listing) malware and intrusion detection systems

c© Springer International Publishing Switzerland 2015
H. Bos et al. (Eds.): RAID 2015, LNCS 9404, pp. 198–221, 2015.
DOI: 10.1007/978-3-319-26362-5 10

Xede: Practical Exploit Early Detection 199

have increasingly become ineffective against APT. Meanwhile, white-listing is
not only inconvenient for end users due to compatibility issues, but also inca-
pable of catching malicious inputs (unless there is a formal definition of all valid
and secure inputs). Instead, an effective defense against APT should focus on
the early detection of exploits. Exploits often violate some code or control-flow
integrity. For example, code injection attacks introduce new (malicious) code
into the system, while return-oriented programming (ROP [39], a typical code
reuse attack) manipulates the control flow to execute its gadgets, short code
snippets that each ends with a return instruction. An exploit detection system
checking these integrities could detect a wide spectrum of exploits.

However, the practical exploit detection is still a challenging problem, espe-
cially for the Windows systems. Remote network exploits against common Win-
dows applications are the most prevailing attack surface [37]. Popular Windows
applications, such as Microsoft Office, often employ the following advanced tech-
niques that are surprisingly similar to exploits. If not carefully vetted, these pro-
grams could be mistakenly classified as malicious files, leading to high false pos-
itives. First, many large Windows functions generate dynamic code to improve
performance or extend the functionality. We analyze 7 common targets in Win-
dows and find that all these applications generate a large quantity of dynamic
codes. An exploit detection system should separate the generated code from the
injected malicious code. Second, some applications may replace or adjust the
return addresses on the stack for obscure reasons. We also saw the example
code that pushes return addresses directly to the stack, instead of through the
call instructions. These irregular behaviors disrupt security mechanisms like the
shadow stack expect the call and return instructions to be matched. Exploit
detection systems need to accommodate these special but common program
tricks to reduce false positives. Third, benign windows applications may have
many short code sequences that resemble gadgets and are wrongfully detected
as such by existing schemes. For instance, we analyzed a large amount of sam-
ples collected from the Internet, and found that most of them contain many
small gadget sequences. In particular, we observed around 5,000 false positives
when simple ROP detection schemes are employed to analyze one PDF file. Fur-
thermore, commodity operating systems have incorporated exploit mitigation
techniques such as data-execution prevention (DEP [17]) and address space lay-
out randomization (ASLR [26]). These techniques significantly raise the bar for
reliable exploits. Many exploits are tied to a specific run-time environment. If the
detector has a different setting other than the target system, the exploits often
trigger exceptions. This can and should be leveraged for the exploit detection.

In this paper, we propose Xede, a practical exploit early detection system to
protect against APT. Xede can be deployed at the gateway to scan the incoming
traffic, such as emails, or deployed as a web service to scan files for exploit detec-
tion. Xede has three major detection engines: exploit exception detector, code
injection detector, and code reuse detector. The first component detects failed
attack attempts by monitoring exceptions. Many exploits rely on the specific
system configurations. Xede uses a variant of software configurations (e.g., OS

200 M. Nie et al.

with different patching levels) to induce the instability of exploits. Our exper-
iments reveal that around 70 % of the malware samples are unstable, causing
run-time exceptions. The second component detects (malicious) injected code
by comparing the executed instructions against a list of benign instructions.
This list is timely updated with the legitimate dynamically generated code to
reduce false positives. Code injection attacks are often combined with code reuse
attacks to bypass the DEP protection. Xede’s third component focuses on the
code reuse detection. It can detect both the more popular return-oriented pro-
gramming (ROP) attacks and jump-oriented programming (JOP) attacks. Sur-
prisingly, our experiments show that around 20% of exploits contain a mix of
return-based and jmp-based gadgets. Xede’s code reuse detector can accommo-
date all the previously-mentioned eccentric program behaviors. With these three
components, Xede can detect many different types of exploits, including zero-day
exploits. We have built a prototype of Xede for the Windows operating systems.
Our evaluation demonstrates that Xede is highly effective in detecting exploits.
For example, we can detect all the malware samples we collected from the Inter-
net. We have also deployed Xede on the Internet as a public service [42] to scan
user-provided suspicious files.

2 Background

In order to exploit a vulnerability of a program, the following three steps need to
be performed. Firstly, attackers need to construct memory layout of the program
to host shellcode and data. Secondly, the attackers hijack the control flow of the
program to injected shellcode directly or by constructing ROP gadgets. Lastly,
the shellcode is executed to exploit the vulnerability. Note that shellcode could
be injected into memory of target processes by either direct code injection, i.e.,
by code injection attacks, or constructing instruction chains through a serious
of ROP gadgets, i.e., ROP attacks. Nowadays it is not easy to directly construct
code injection attacks since the DEP defense mechanism employed in Windows
does not allow direct code injection on writable and executable memory space.
To address this issue, ROP gadgets are used to construct shellcode by leveraging
indirect branch instructions, i.e., ROP gadgets, in target processes. Besides ROP
gadgets that usually end with ret instructions, JOP gadgets ending with indirect
jmp instructions can be used to construct shellcode as well [8]. In this paper, for
simplicity, we collectively call them ROP gadgets.

To launch pure code injection attacks, the attackers can arrange memory
layout to host shellcode by using heap spray or stack overflow. As shown in
Fig. 1, the attackers can use the HeapAlloc function to allocate the shellcode at
the addresses of 0x06060606, 0x0A0A0A0A, and 0x0C0C0C0C, respectively. The
control flow of the program can be hijacked to the shellcode by altering the
function pointer or return address, and the pointer or the address will point to
the location of the injected shellcode. For instance, the function pointer in Fig. 1
is changed to 0x0C0C0C0C that is the location of the injected shellcode. Once
the altered function pointer is invoked, the shellcode will be executed. Unlike

Xede: Practical Exploit Early Detection 201

code injection attacks, ROP attacks identify ROP gadgets and construct the
stack including the addresses of the ROP gadgets. As shown in Fig. 1, gadgets
are located at different locations, e.g., at 0x5e861192 and 0x5e81372a. When
the ESP register points to the address of the first gadget, i.e., 0x0x5e861192,
the control flow of program will be redirected to the gadgets by leveraging a
ret instruction. The gadgets are executed one by one according to the addresses
stored on the stack. Eventually, the WriteProcessMemory function is called to
finish exploit execution.

01003EA7 ret

Stack
Growth

Direction

...

0x5E821192

kernel32!WriteProcessMemory:
7c80220f mov edi,edi

5E8013CE xchg eax,ebx
5E8013CF ret

5E811564 mov ebx, eax
5E811566 jmp [eax]

5E81372A pop ebx
5E81372B ret

5E8156A8 mov [eax], eax
5E8156AA ret

5E821192 pop ecx
5E821193 ret

5E820DE0 add eax, ecx
5E820DE2 ret

0x011012AB

0x5E81372A

0x0012ff20

0x5E8013CE

0x5E8156A8

0x5E820DE0

Stack ROP Gadget

0x5E811564

mov eax, FunArray
call [eax + 0x4]

0x0C0C0C0C

Function Address 1

Function Address 3

0x06060606:
nop
nop
...
shellcode

0x0A0A0A0A:
nop
nop
...
shellcode

0x0C0C0C0C:
nop
nop
...
shellcode

...

...

...

HeapAlloc

Heap

nops:
0C0C0000 nop
0C0C0001 nop
...
0C0C0C0C nop
...
0C7FFFCF nop

shellcode:
0C7FFFD0 mov eax, fs:30h
...
0C7FFFF0 mov eax, 7C80220F
0C7FFFF5 jmp eax;
...

Heap

...

...

(a) C
ode Injection

(b) R
O

P

Step 1. construct
memory layout

Step 2. hijack
control flow

Step 3. execute
shellcode

esp

kernel32!WriteProcessMemory:
7c80220f mov edi,edi

01005B24 FunArray:

Code:

Function Address 4

Function Address 5

Data:

Fig. 1. Exploits examples with different exploitation techniques.

Normally, code injection attacks are easier to construct. However, the data
execution prevention (DEP) mechanism raises the bar for code injection attacks.
Therefore, it is not easy to directly inject executable code into memory with
DEP-enabled systems. ROP attacks are immune to DEP but can be throttled
by the address space layout randomization (ASLR) mechanism. To evade these
prevention mechanisms, attackers adopt hybrid approaches to launch attacks,
i.e., they can construct ROP gadgets to bypass the prevention mechanisms and
leverage code injection attack to execute shellcode.

202 M. Nie et al.

Key Observation. Benign programs contain some attack patterns, e.g.,
dynamic code, mismatching of call and return instructions, and small gadget
sequence, which make exploit detection harder. However, exploits generated by
different attack techniques share a common pattern that they redirect the con-
trol flow to some abnormal places other than the original ones. Specifically, the
control flow is redirected to the pre-constructed shellcode or the first ROP gad-
get. Hence, we could detect different exploits by detecting unexpected jumps
according to different attack features.

3 System Design

In this section, we describe the design of Xede, a practical exploit early detection
system, in detail.

3.1 Overview

Xede is a comprehensive exploit detection platform. It can detect both code
injection and code reuse attacks. Code injection attacks introduce alien code into
the system. Xede accordingly builds a list of benign code and detects branches to
the injected code by comparing branch destinations to that list. Meanwhile, code
reuse attacks like return-oriented programming (ROP) have distinctive control
flow patterns. For example, ROP reuses short snippets of the existing code called
gadgets. Each gadget ends with a return instruction which “returns” to the
next gadget. As such, ROP has a sequence of unbalanced returns. Xede can
thus detect code reuse attacks by looking for these control flow patterns. In
addition, the ubiquitous deployment of exploit mitigation mechanisms, such as
DEP and ASLR, has significantly raised the bar for working exploits. Many
exploits become unreliable as a result of that. This observation is leveraged by
Xede to heuristically detect exploits by monitoring “abnormal” exceptions.

Guest OS

Target Process

...
push ebp
mov ebp, esp
sub esp, 32
...

Virtualizer

instruction execution

Process
Process

call

ret
jmp

Code
Reuse
Attack

...

Shadow
Stack

Detect
Gadgets

Code Reuse Detector

Verify
Code Region

Code Injection Detector

Region List

Module
Loader

DGC
Generator

Sensitive A
PIs

U
sed by R

O
P

Xede

Code
Injection
Attack

Exploit
Related

Exception

Detection
Result

Sam
ple

Gadgets
Counter

ret/jmp/call

Dynamic
Information

Extractor

Instruction
A

nalyzer
A

PI
M

onitor

API
inform-

ation

instruction
information

Exception
Handler

ins addrfetch instruction

instructions

Filter
Exceptions

Exploit Exception Detector

instruction
address

Fig. 2. The architecture of Xede

Xede: Practical Exploit Early Detection 203

Figure 2 shows the architecture of Xede. Xede can be based on a whole-
system emulator like QEMU or a dynamic binary translation based virtualization
platform, such as VirtualBox and VMware workstation. At run-time, the virtu-
alizer feeds the details of executed instruction to Xede. Xede has four major
components. A dynamic information extractor extracts the run-time informa-
tion of the running system, such as the executed instructions, exceptions, and
the loaded modules. That information is passed to the three exploit detection
engines: exploit exception detector, code injection detector, and code reuse detec-
tor. They try to detect exploits with abnormal exceptions, injected instructions,
and characteristic code-reuse control flow patterns, respectively. In the rest of
this section, we will describe each module.

3.2 Dynamic Information Extractor

Xede is based on a system emulator. This allows Xede to monitor every aspect
of the target system. Xede is particularly interested in the details of certain
executed instructions and critical API calls. The emulator passes the executed
instructions and their operands to Xede. If it is a branch instruction, Xede checks
whether the branch target points to a benign code block to detect injected code.
Moreover, Xede uses the virtual machine introspection technology [24] to recon-
struct the high-level API calls. Xede is interested in three types of API functions:
the functions that load a kernel module or a shared library, the functions that
handle exceptions, and the functions that are often misused by code reuse attacks
(e.g., those that change the memory protection). The parameters and return val-
ues of those API calls allow Xede to identify valid code regions, catch abnormal
exceptions, and detect code reuse attacks.

3.3 Exploit Exception Detector

Most commodity operating systems support two exploit mitigation mechanisms:
DEP and ASLR. The former prevents code from being overwritten and data from
being executed. Accordingly, no injected code can be immediately executed. It
must be made executable first. The latter randomizes the layout of a process
to prevent the attacker from locating useful gadgets. Many exploits have severe
compatibility issues. They often trigger exceptions when the target software con-
figurations change. Because of these issues, exploits are significantly harder to
be perfect. On the other hand, popular attack targets, such as Microsoft Office,
Adobe Acrobat and Flash, and Oracle Java virtual machine, all run fairly stable
under normal operations. An exception in these programs may signify an ongoing
attack. Therefore, Xede tries to detect failed exploits by monitoring the excep-
tions caused by these programs. Most existing exploit detection systems focus
solely on detecting successful exploits. Xede instead can detect both successful
and failed exploits.

There are two challenges to this approach: first, a process may cause various
benign exceptions during its execution. For example, the kernel may swap out
a part of the process to relieve the memory pressure. If that part is accessed

204 M. Nie et al.

by the process, an exception will be raised by the hardware. Hence, we must be
able to distinguish these benign exceptions from the ones caused by the attacks.
Second, complex commercial programs like Microsoft Office often try to handle
exceptions if they can to provide a smooth user experience. There are many
different ways to handle an exception. This could confuse the exploit detection
systems. Therefore, we need to have a single unified method to catch exceptions.
There are 23 different exceptions in the Windows operating system roughly in the
following five categories: memory-related, exception-related, debugging-related,
integer-related, and floating-point-related. Exceptions caused by exploits most
likely fall into the first category. For example, they may read or write invalid
data areas or execute illegal instructions. Memory-related exceptions are handled
by the page fault handler in the kernel (i.e. the MmAccessFault function in
Windows), which may further deliver them to the faulting user process.

To address the first challenge, we need to separate benign exceptions from
ones caused by attacks. Programs can cause benign exceptions in the following
two scenarios: first, the kernel uses demand paging to reduce memory consump-
tion. For example, it may load a part of the process address space lazily from
the disk, or swaps some memory pages out to the disk if they have not been used
for a long time. Second, the user process itself might use memory-related excep-
tions to implement lazy memory allocation. For example, some programs use
large data containers with an unknown length. The memory is only allocated
when the data is accessed and an exception is raised. Microsoft Power Point
2007 uses this approach to manage Object Linking and Embedding (OLE) data.
Xede has to exclude both cases from the exploit detection otherwise there will
be lots of false positives. The first case is rather straightforward to exclude. The
page fault handler (MmAccessFault) recognizes that this page fault is caused
by a valid-but-not-present page. It reads the accessed data from the backing
store and returns STATUS SUCCESS to restart the instruction. Exceptions caused
by attacks instead cause MmAccessFault to return STATUS ACCESS VIOLATION.
However, MmAccessFault also returns STATUS ACCESS VIOLATION for the second
case. To solve this problem, we first compare the faulting instruction address
against the list of legitimate code. An alert will be raised by Xede if the instruc-
tion is illegitimate. Otherwise, we record the faulting data address expecting
the program to allocate new memory for it. The next time a new data region is
allocated, we check whether it covers the previous faulting data address. If so,
the exception is considered to be benign.

3.4 Code Injection Detector

Even though modern operating systems like Windows enforce data execution
prevention, code injection is still possible. For example, some (old) programs or
libraries have mixed code and data pages. These pages must be made executable
and writable, violating the DEP principle. If a program can dynamically generate
code, its address space could contain writable and executable pages. Moreover,
the memory protection can also be changed by system calls. Xede accordingly

Xede: Practical Exploit Early Detection 205

has a code inject detector, which builds at run-time a list of legitimate code
regions and checks whether an executed instruction is in the list or not.

Legitimate Code Regions: A process consists of many different executable
modules. For example, the kernel inserts the standard dynamic loader into the
process to start a new one. The loader then loads the main program together
with its linked shared libraries. The program itself can load additional dynamic
libraries at run-time. Moreover, other processes, such as the input method edi-
tor (IME), can inject code into the process. Xede needs to identify all these
executable modules. To this end, Xede hooks the API functions that may load
code into a process. Their run-time parameters and return values provide the
necessary information for Xede to locate the loaded executable (the program or
a shared library) and know the base address of the executable. Xede then parses
the executable to find the offset and size of its code section. The run-time code
location is the base plus the offset. Correspondingly, we also monitor the API
calls that unload an executable and remove the associated code section from the
list of legitimate code regions. This list is also kept up-to-date with dynamically
generated code.

Dynamically Generated Code: Dynamic code generation is a popular
method to improve program performance. For example, modern browsers rely on
just-in-time compiling to speedup JavaScript programs. This makes it possible
to run large complex applications such as Google Maps in the browser. Xede
requires a simple and generic way to recognize dynamically generated code. To
that end, Xede hooks the related API calls to monitor memory allocations and
memory protection changes.

To generate dynamic code, a process can allocate a block of writable-and-
executable memory and then write the code into it, or it can save the code
in the already-allocated writable memory and calls a system API to make the
memory executable. In either case, Xede hooks the memory allocation and mod-
ification APIs. If a block of memory is made executable, we add it to the list
of legitimate code region list. Likewise, if a block of memory loses its execution
permission or is freed, we remove it from the code region list. Note that these
two methods can only allocate execute memory in the page granularity (4KB for
x86-32). Nevertheless, there are some unsafe programs that generate code using
the executable heap. That is, the whole heap is made writable and executable. It
is thus unnecessary for these programs to explicitly allocate executable memory
pages. They could just use the ordinary malloc and free functions to man-
age executable memory. A simple solution would add the whole heap section
to the executable code region. This leads to a high false negative rate for Xede
because code injected in the heap is mistaken as benign code. To identify the
exact regions of the generated code, we observe that well-designed programs use
NtFlushInstructionCache to flush the instruction cache if new code is gen-
erated or the existing code is modified (self-modifying code). Xede thus hooks
this function and adds the memory block specified in its parameters to the
benign code region list (we merge continuous regions to reduce the list size.) On
architectures with relaxed cache consistency mode, the instruction cache must

206 M. Nie et al.

be flushed for the generated/modified code to take effect. This is not strictly
necessary for the x86 architecture which provides transparent instruction cache
flushing. However, we expect most commercial programs (i.e., the poplar targets
of attacks) to follow the correct practice to flush the cache because Windows
does support several different architectures (e.g., ARM).

00620100 mov edi, edi
...
0063C274 push ebp
0063C275 mov ebp, esp

0063C277 sub esp, 32
0063C27A pushad
...
00728AFF call eax

010A8F00 lea eax, [eax]
...
017B38FE pop eax
017B38FF ret

00401000 xor eax, eax
...
00401B34 mov eax, ebx
00401B36 jmp eax

...

...

00401000 xor eax, eax
...
00401B34 mov eax, ebx
00401B36 jmp eax

...

00620100 mov edi, edi
...
0063C274 push ebp
0063C275 mov ebp, esp

0063C277 sub esp, 32
0063C27A pushad
...
00728AFF call eax

010A8F00 lea eax, [eax]
...
017B38FE pop eax
017B38FF ret

...

Region List

insert a new region

Region List

Fig. 3. Merge adjacent code regions

Code Injection Detection: Xede detects the injected code by checking
whether an executed instruction lies in the list of benign code regions. How-
ever, it is prohibitively time-consuming to check this for every single instruction.
Xede instead validates this property when the control flow is changed. In other
words, it only checks that the destination of each branch instruction is within
the code region list. This coincides with the concept of basic blocks. Each basic
block is a linear sequence of instructions with only one entry point and one exit
point. To guarantee correctness, we must ensure that each basic block lies within
a single region. The code region list we built should not have problems in this
regard if the program is correct. Figure 3 shows how this requirement is fulfilled
by merging adjacent blocks of dynamically generated code. In addition, many
basic blocks target another basic block in the same region. Xede thus verifies
whether a branch target is within the current list, and only falls back to the
whole list if that quick check fails.

3.5 Code Reuse Detector

With the wide-spread deployment of DEP and ASLR, code reuse attacks have
become one of the most popular attack vectors. Fine-grained code reuse attacks
include return-oriented programming (ROP) and jump-oriented programming

Xede: Practical Exploit Early Detection 207

(JOP). ROP uses return instructions to chain gadgets, while JOP uses jump
instructions instead. ROP is often used by attackers to bypass DEP. Xede can
detect both ROP and JOP. Xede detects JOP by identifying sequences of gadget-
like instructions. In this paper, we omit the details of the JOP detection, and
focus on the more practical and more popular ROP attacks instead.

In ROP, each gadget ends with a return instruction. When a gadget returns,
it pops the address of the next gadget off the stack and “returns” to it. A
typical ROP attack consists of 17 to 30 gadgets [9]. This introduces a sequence of
erratic return-based control flow transfers. For example, unlike legitimate return
instructions that jump to a valid return site (i.e., an instruction preceded by a
call instruction), gadgets often do not mimic a return site. As such, one way to
detect ROP is to check whether the return target is preceded by a call instruction.
Unfortunately, this method can be easily bypassed by call-preceded gadgets [7].
On the other hand, normal program execution has (mostly) balanced call and
return pairs, but ROP causes mismatch between them (more returns than calls).
This provides a more precise and reliable method to detect ROP. Specifically,
Xede maintains a shadow stack for return addresses. It pushes the return address
to the stack when a call instruction is executed, and pops the return address at
the top of the stack and compares it to the actual return address when a return
instruction is executed. This approach can detect ROP attacks because, when an
ROP attack overwrites the stack with its gadget addresses, these addresses are
not added to the shadow stack. However, it cannot be applied to the Windows
platform due to various erratic behaviors of benign programs. We observe all of
the following cases:

1. The program may replace the return address on stack with a completely
different return address, causing the call-return mismatch.

2. The exception handling, setjmp/longjmp, and call/pop sequences introduces
extra call instructions without the matching return instructions. For exam-
ple, a program must be compiled as position-independent executable (PIE)
to benefit from ASLR. PIE uses the PC-relative addressing mode to access
its code and data. However, the x86-32 architecture does not natively sup-
port this addressing mode. Compilers instead emulate it by calling the next
instruction and immediately popping the return address off the stack.

3. The program may adjust the return address on the stack (for unknown rea-
sons), but usually within a few bytes.

As such, return addresses on the stack might be added, removed, and changed
during the normal program execution. Xede needs to handle all these cases to
reduce false positives.

First, to handle added return addresses, we search the shadow stack top-down
for possible matches. If a match is found, we consider this return benign and
pop the excessive returns above it. Note that this will not conflict with recursive
functions whose return addresses might appear on the stack many times because
normal recursive functions have matched call and return pairs. Second, to han-
dle removed return addresses, we observe that normal program often removes
only a single extra return address from the stack at a time. Therefore, Xede

208 M. Nie et al.

only considers it an ROP attack if there are N consecutive mismatched return
addresses. According to our observation, an exploit can be accurately captured
if the enhanced shadow stack captures three consecutive mismatched return
addresses. Therefore, in our prototype, we use three for N. A normal real-world
ROP attack usually uses 17 to 30 gadgets [9], say, to arrange gadgets and store
parameters. Under some rare conditions, the attacker might be able to launch
an ROP attack with two gadgets, one to make the injected shellcode executable
(e.g., with the VirtualProtect function, assuming the parameters to this func-
tion happen to be placed.) and the other to execute the shellcode. To defeat
ROP attacks with a very short gadget sequence, Xede hooks 52 most common
APIs used by ROP attacks and checks whether these functions are “called” by
a return instruction. If so, Xede considers it an ROP attack and raises an alert.
Third, to handle changed return addresses, we analyze a number of common
executables and find that return addresses mostly change by less than or equal
to 16 bytes. Therefore, if a return address does not match the return address on
the top of the stack, we check whether they are within 16 bytes of each other. If
so, we consider the return address has been changed by the program itself and
do not raise an alert. In addition, to avoid repeating the above time-consuming
heuristics, we add any detected special cases to a white list and quickly check if
a potential mismatch is discovered.

Xede can also detect ROP attacks that use stack pivoting. Stack pivoting
points esp, the top of the stack, to a buffer under the attacker’s control, such
as a maliciously constructed heap area. The fake stack facilitates the attacker to
carry out complex ROP attacks. To detect stack pivoting, we verify whether the
esp register points to a valid stack area when we detect a potential mismatch of
return addresses. We can retrieve the base and length of the stack from the thread
control blocks in the guest operating system, such as the following fields in the
Windows TEB (thread environment block) structure: teb->NtTib->StackBase
and teb->NtTib->StackLimit.

4 Implementation

We have implemented a prototype of Xede based on QEMU, a generic open-
source emulator. QEMU allows us to flexibly instrument instructions/basic
blocks and introspect the guest memory. However, the design of Xede is not tied
to QEMU. It is equally applicable to other hardware emulators (e.g., Bochs) and
binary-translation based virtualization systems (e.g., VMware workstation and
Oracle VirtualBox).

Figure 4 shows the overall architecture of our QEMU-based prototype.
QEMU parses the guest instructions and further translates them into basic
blocks. Basic blocks may further be linked into super blocks (i.e., transla-
tion blocks of QEMU). As previously mentioned, Xede has four major com-
ponents. The dynamic information extractor retrieves the instruction details
and hooks important API calls. As such, each time a new instruction is parsed,
and its information is passed to this module for bookkeeping. The module also

Xede: Practical Exploit Early Detection 209

QEMU

CODE:
4000414d: push ebp
4000414e: mov ebp, esp
40004150: sub esp, 32
...
DATA:
40000000: 74 20 62 65 41 FF

instruction
instrumenting

virtual m
achine introspection

fetch
instructions

struct CPUState {

target_ulong regs[CPU_NB_REGS];
target_ulong eip;
target_ulong eflags;
...
};

Guest Memory Guest Registers

Translation
Block(TB)

Translation Execution

TranslateBlock
instrumenting

TB informationinstruction informatin

Exploit Exception Detector Code Injection Detector Code Reuse Detector

Dynamic
Information
 Extractor

API parameters
and return vaules

code region
information

indirect branches
information

Fig. 4. Xede prototype based on QEMU

during Process Creation

ntdll.dll

target.exe kernel32.exe

ws2_32.dll

user32.dll third_party.dll

U
ser Space

K
ernel Space

LoadLibraryEx,
etc.

NtMapViewOfSectionZwMapViewOfSetcion

MmMapViewOfSection

MiMapViewOfPhysicalSection MiMapViewOfImageSection MiMapViewOfDataSection

map a physical section map a data sectionmap a PE module

Ring3 API:

Ring0 API:

before process exec before reaching OEP dynamic Loaded Modules

input_mothod.dll

SetWindowsHookEx,
etc.

injected by others
Process
Lifttime

Kernel
loaded

Kernel
loaded

Process
preloaded

Dynamic
loaded

3rd party
injected

Fig. 5. Xede introspects Windows libraries

inserts a call back to the entry point of each interested API function (e.g.,
NtFlushInstructionCache) to catch its parameters and return values. The API
call data is used by the second module, exploit exception detector, to detect failed
exploits. To reduce the overhead of address validation, code injection detector
only validates the branch targets to ensure that they jump to legitimate code
regions. As such, it inserts a callback at the end of each basic block (this is
where branch instructions are located.) The last module, code reuse detector,
instruments indirect branch instructions (i.e., indirect calls, indirect jumps, and
returns).

210 M. Nie et al.

Figure 5 shows how our prototype for Windows intercepts the executable
loading events. A process may include executables loaded by the kernel (e.g.,
ntdll.dll and kernel32.exe), the dynamic loader (e.g., user 32.dll and
ws2 32.dll), the process itself, and libraries injected by third-party pro-
grams such as input method editors. These modules are loaded into the
process using different API functions. For example, the kernel uses function
ZwMapViewOfSection to load an executable section, and a user process can load
dynamic libraries using a series of related functions such as LoadLibraryEx. A
third-party library can be injected into the process with SetWindowsHookEx.
However, these functions eventually converge at the MiMapViewofImageSection

function. As such, Xede hooks this function to intercept the executable module
loading events.

Xede leverages the guest kernel states to improve the preciseness of the detec-
tion. For example, it retrieves the valid stack area from the kernel to detect
stack pivoting. This technology is commonly known as virtual machine intro-
spection [20,24], which reconstructs the high-level semantics from the low-level
raw data such as the memory and disk images. Our semantic analyzer is devel-
oped to perform this task.

5 Evaluation

In this section, we evaluate effectiveness of exploit detection with Xede and
the incurred overheads. In particular, we systematically analyze two real exploit
cases detected by Xede. We demonstrate the effectiveness of Xede by detecting
real exploits collected from contagiodump [10], securityfocus [38], and exploit-
db [18]. We deploy our Xede prototype as a service to detect exploits on the
Internet and collect data from two systems. We integrate Xede into the mail
server of a university in China which aims to detect exploits in emails, and
deploy Xede on the Internet as a pubic service [42] that provides exploit detection
services for Internet users. In particular, similar to VirusTotal [43], the public
service is deployed as a web service so that any Internet users can scan their files
by submitting the files to the website. Currently, the service allows anonymous
sample submissions from the Internet for exploit detection.

5.1 Effectiveness Evaluation

Detection with Exploit Samples. We use exploits downloaded from some
websites, e.g., contagiodump [10], securityfocus [38], and exploit-db [18], to eval-
uate the effectiveness of exploit detection. Overall we collect 12501 exploits that
are included in doc/docx/rtf files, xls/xlsx files, ppt/pptx files, and pdf files.
Table 1 shows the results of exploit detection. Xede accurately detects all of these
exploits. Xede detects that more than 75 % exploits are generated by using the
code injection techniques. In particular, among these exploits, 51.47 % exploits
adopt the ROP techniques, which validates that most of exploits combine ROP
and code injection techniques, and around 19.85 % exploits leverage JMP-based

Xede: Practical Exploit Early Detection 211

Table 1. Exploit sample proportion with different exploitation techniques.

Exploit techniques Sample proportion

code injection 75 %

ret-based gadgets 51.47 %

jmp-based gadgets 19.85 %

exploit exception 25 %

gadgets. 25 % exploits are captured because they raise abnormal execution excep-
tions. Furthermore, we do not observe any pure ROP attacks.

Real Deployment Detection. We collected 1,241 samples submitted by the
anonymous Internet users during three months, and collected 10,144 attachments
from our university email system for one month. Specifically, we selected 5,000
active users and randomly sampled their incoming emails with a rate of 3 %, and
analyzed 20 popular types of the samples attached in the emails. This results in
62,500 emails and 10,144 attachments. Note that, we collected the emails before
the email filters. Table 2 shows the breakdown of file types collected in real world
deployment. Xede detects 136 exploits, among which 4 and 132 exploits are from
the emails and the public service, respectively. Most of the exploits are pdf files
and the files generated by MS office suites. They account for 30.9 % and 58.1 %,
respectively. The rest are some swf files, html/htm files, and wps files. We confirm
these exploits by manual analysis. Although we observe the attacks constructed
by these exploits, only 44.12 % of exploits successfully succeed, which means
that these exploits heavily rely on special system environments. Therefore, it is
necessary to capture and detect the exploits that do not succeed to compromise
the systems. Table 3 shows the success rate of different exploits. Xede can detect
all these exploits no matter if they are successfully executed, which shows that
the exploit detection in Xede is independent of the target system configurations.
Note that, in the experiments, we do not differentiate legitimate and malicious
application “crashes” because we do not observe any legitimate “crashes”.

Many exploits detected by Xede cannot be captured by the existing anti-
virus software. We confirm it by using some commercial virus software, i.e.,
Kaspersky 2015, Mcfee AntiVirus Plus, Avira Free Antivirus 2015, and Norton
2015. Overall, all these software cannot correctly detect the exploits. As shown
in Table 4, Kaspersky achieves the lowest false negative that is around 15.44 %.
It only detects 115 exploits out of 136 exploits, and the rest 21 exploits cannot
be detected by any anti-virus software. The results reveal that many exploits can
evade detection with signature matching. It demonstrates that a generic detec-
tion system is essential to detect exploits by identifying malicious operations of
software.

For the 11,249 samples that Xede did not raise an alert, we used the
previously-mentioned anti-virus products to cross-validate whether Xede intro-
duced any false negatives. None of those samples were identified by them as

212 M. Nie et al.

Table 2. Breakdown of sample file types collected in real world deployment.

Sample The number of The number of Total

type email samples submitted samples number

doc/docx/dot 5840 154 5994

pdf 153 241 394

swf 2 49 51

xls/xlsx 778 112 890

html/htm 80 102 182

rtf 110 120 230

ppt/pptx/pps 82 144 226

wps 58 20 78

txt/ini 2611 115 2726

jpg/png/gif 411 180 591

chm 19 4 23

Total Number 10144 1241 11385

Table 3. Success rate of different exploits.

Sample The number of Succeed Failed Success

type detected exploits exploit exploit rate

doc/docx 58 43 15 74.14 %

pdf 42 4 38 9.52 %

swf 8 0 8 0 %

xls/xlsx 11 8 3 72.73 %

htm/html 6 3 3 50 %

rtf 6 1 5 16.67 %

ppt/pptx/pps 4 1 3 25 %

wps 1 0 1 0 %

Table 4. False negatives of commercial anti-virus software.

AV software Version Date of DB update False negative

Kaspersky 15.0.2.361 24/05/2015 21

McAfee 18.0.204 24/05/2015 49

Avira 15.0.10.434 24/05/2015 22

Norton 22.2.0.31 24/05/2015 32

Xede: Practical Exploit Early Detection 213

malicious. Note that false negatives are still possible if both Xede and those
anti-virus products miss the attacks. Moreover, to roughly estimate how many
of these 11,249 samples may be detected by existing approaches [16,30,34] as
malicious (possible false positives), we recorded the suspicious patterns detected
(but eventually dismissed) by Xede in these samples. Particularly, we found that
879 xls samples cause Excel to generate more than 90KB dynamic code each,
and most doc samples each lead to over 4,500 mismatched call and ret instruc-
tions in Microsoft Word. All these cases may be mis-identified as malicious by
existing approaches. Xede did not raise alerts for these cases.

5.2 Case Study

We analyze two different exploit samples that detected by our Xede. One sample
can successfully compromise a system by leveraging the vulnerability reported
by CVE-2012-0158, and the other sample leveraging the vulnerability reported
by CVE-2014-1761 fails to launch the attack due to wrong system configurations.

Case 1: CVE-2012-0158. We analyze an exploit that leverages the vulnera-
bility named with CVE-2012-0158 [14] that is a buffer overflow vulnerability in
the ListView and TreeView ActiveX controls in the MSCOMCTL.OCX library.
The vulnerability is leveraged against a Doc file that combines ROP and code
injection technique. In order to evade Data Execution Prevention (DEP), the
Doc file invokes the system call VirtualAlloc to allocate a block of executable
memory by constructing a ROP chain, and injects the shellcode into the space.
We run the exploit in Windows 7 as guest OS with Office 2003 SP1. In order
to systematically analyze the exploit techniques leveraged by the exploit, we do
not terminate the exploit after it is detected. Instead, we allow Xede to detect
all attacks in the exploit.

ROP Detection. Xede detects 12 anomalous return operations. We find that
the returned address by executing the first return instruction is 0X7c809a81

that is exactly the address of the system call VirtualAlloc. By analyz-
ing the stack information, we obtain the parameters of the system call as
follows. VirtualAlloc(0x001210b0, 0x0001000, 0x00001000, 0x0000040).
After the system call is executed, a block of executable memory is allocated.
We confirm that the memory later will be injected with the shellcode. Moreover,
we detect 45,039 gadget-like sequences of instructions. But, we do not find any
jmp-based gadgets.

Code Injection Detection. During execution of the exploit, Xede records
53 legal code regions and 47 regions that are executable sections generated by
the modules (e.g., DLL and EXE modules). As we discussed in Sect. 3, once
instructions are not executed in a legal region, Xede will treat it as an attack.
Overall, Xede detect 133,643 attacks. In particular, by analyzing the first five
attacks, we find that the instructions are within the memory block allocated
by the VirtualAlloc function. It means that these instructions are the code

214 M. Nie et al.

injected by the attackers. We confirm that the code is shellcode by manual
analysis. We identify several instructions that should not be invoked by Doc
files, e.g., to release PE files or invoke CMD scripts.

Case 2: CVE-2014-1761. Now we analyze another Doc sample that leverages
the vulnerability of CVE-2014-1761 [15] that is executed in Windows XP OS with
Office 2003 SP3. When we open the sample file, the Word application crashes.
We do not find anomalies by monitoring invoked APIs.

Exploit Exception Detection. Xede identifies anomaly address access at
0x909092e4. We confirm the sample is an exploit by running in Windows 7
OS with Office 2010 SP1. The possible reason why the exploit fails is that the
part of shellcode, i.e., 0x9090, is treated as the address and the shellcode cannot
be correctly located. Therefore, the exploit was not correctly executed due to
the mismatched software versions.

Summary. As we observed, most exploits combine different exploitation tech-
niques, i.e., ROP and code injection, which similar to the exploit sample above.
ROP is used to evade the DEP mechanism, and the attacks finally are mounted
by executing injected shellcode. According to the two exploit sample above, we
show that how Xede detects exploits no matter if they can be successfully exe-
cuted.

5.3 Performance Evaluation

In this experiment we evaluate the overheads incurred by Xede and the overheads
during Xede bootstrapping. The experiment is performed in an Ubuntu 12.04
server with 3.07 GHz Intel Xeon X5675 CPU and 32 GB memory. We measure
the overheads incurred by Xede compared with pure QEMU. As shown in Fig. 6,
Xede consumes around 60 % of CPU cycles that consumed by QEMU during the
bootstrapping within the 60 seconds. The possible reason is that exploit exe-
cution incurs many virtual machine introspections during Xede bootstrapping.
Note that, Xede can effectively detect most exploits during this period. After
the bootstrapping, Xede does not introduce extra significant CPU consumption.

We compare the CPU utilization rate and memory overhead by measur-
ing the resource assumption in a Guest OS with 256 MB assigned memory (see
Figs. 7 and 8). We can observe that Xede does not incur many CPU cycles
after bootstrapping. The CPU utilization rate in QEMU with Xede and QEMU
without Xede are around 0.12 % and 0.08 %, respectively. Similarly, Xede does
not introduce significant memory overheads. Therefore, Xede is very lightweight.
Furthermore, we measure the overheads with parallel exploit detection. Figure 9
illustrates the resource consumption with 80 Xede instances. Memory consump-
tion is stable and the consumption rate is within 90 %. CPU utilization rate is
around 6 % except some utilization rate bursts. Thus, Xede is scalable to parallel
exploit detection.

Xede: Practical Exploit Early Detection 215

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550

C
PU

ut
ili

za
tio

n
ra

te
(%

)

Time (s)

Fig. 6. Increased CPU consumption by Xede compared with QEMU.

0

1

2

3

4

0 50 100 150 200 250 300 350 400 450 500 550

R
es

ou
rc

e
ut

ili
za

tio
n

ra
te

(%
)

Time (s)

CPU
MEM

Fig. 7. CPU cycles and memory consumed by Xede.

0

1

2

3

4

5

0 50 100 150 200 250 300 350 400 450 500 550

R
es

ou
rc

e
ut

ili
za

tio
n

ra
te

(%
)

Time (s)

CPU
MEM

Fig. 8. Increased CPU and memory consumption by Xede compared with QEMU.

216 M. Nie et al.

0

20

40

60

80

100

0 100 200 300 400 500 600 700 800 900 10001100

R
es

ou
rc

e
ut

ili
za

tio
n

ra
te

(%
)

Time (s)

CPU
MEM

Fig. 9. CPU and memory consumption with 80 Xede instances.

6 Discussion

Detecting Exploits without ROP and Code Injection. As we observed,
Xede can detect exploits leveraging ROP or/and code injection. However, it may
not be able to detect exploits that hijack control flows without using ROP. For
example, exploits can use the software code to copy shellcode to the legal code
region and leverage legal code to hijack the control flow to the shellcode. It is
very hard to construct such exploits since exploit construction requires strict
conditions, e.g., writable code segment and evading DEP. For instance, we can
compute checksum for different memory region to detect memory rewriting. In
real practice, we do not notice any exploits that really implement this. We can
easily extend Xede to detect such exploits.

Accuracy of ROP Detection. Xede does not count the number of gadgets
where source and destination addresses of jmp are same. It significantly reduces
the miscounted gadgets, and thereby reduces false positives of detecting JOP.
However, it is possible to evade Xede by constructing gadget chains with the
same intermediate gadgets, i.e., gadget 1->gadget x->gadget 2->gadget x->
· · · . In order to perform control flow hijacking from the intermediate gadgets to
different gadgets, a large amount of gadgets are required to build chains between
gadgets, e.g., between gadget 1 and gadget x in the example above. However, it
is really difficult to such gadget chains, and we did not observe any attacks in
real practice. Thus, we do not consider the attacks in this paper.

7 Related Work

Malicious code detection is mainly based on behavior analysis [2,3,19,27,45,
46]. The principle of this technique is to monitor APIs called by the target
process and then check if the process behaves properly via analyzing the API
sequence. The behavior analysis techniques are also widely adopted in current

Xede: Practical Exploit Early Detection 217

anti-virus software, such as FireEye [19] and WildFire [45]. The shortcomings of
the approaches are also obvious. They need to configure corresponding behavior
policies for different types of samples. By analyzing API sequence, it is very
difficult either to describe the comprehensive behaviors of a benign software or to
accurately define the possible behaviors of malicious code [25]. Moreover, exploits
are very sensitive to the system environment. If a victim software version does
not match the expected environment, the exploit will abort and the malicious
behaviors cannot be identified.

Recently more researches are conducted to detect exploits by identifying
shellcode [31,35,44]. Shellcode detection approaches intend to scan the content
of the sample file before the file execution and then to detect whether the file
includes shellcode characteristics. Polychronakis et al. [31] use a set of runtime
heuristics to identify the presence of shellcode in arbitrary data streams. The
heuristics identify machine-level operations that are inescapably performed by
different shellcode types, such as reading from FS:[0x30], writing to FS:[0]. Wang
et al. [44] blindly disassembles each network request to generate a control flow
graph, and then uses novel static taint and initialization analysis algorithms to
determine if self-modifying (including polymorphism) and/or indirect jump code
obfuscation behavior is collected. Such line of approaches shares an important
shortcoming. Content in data files is the same to the actual layout in process
memory. For example, shellcode hiding in a Doc file will be parsed and reorga-
nized by its host process, i.e., winword.exe. Therefore, it is not easy to accurately
identify the presence of shellcode in different data files. Moreover, since shell-
code representation may not be fundamentally different in structure from benign
payloads [28], these approaches inevitably suffers from significant false positive
rates.

Exploit detection by enforcing Control Flow Integrity (CFI) generates a com-
plete control flow graph (CFG) of samples (or, the host process of the sample file
if the sample is a data file) by performing static pre-analysis [1,21,47]. It moni-
tors the execution of the target process, analyzes each instruction executed, and
verifies the legitimacy of each control flow transfer by checking whether the flow
transfer exists in the CFG. Zhang et al. [47] classify the destination addresses of
indirect control flow transfer into several categories, such as code pointer con-
stants, computed code addresses, exception handling addresses, and verify these
destination addresses according to the results of static analysis. Unfortunately,
the CFI approaches cannot be adopted in real systems because of the following
reasons. Firstly, aiming to construct complete CFGs, CFI usually requires source
code of program or debug information of whole program. The information of
proprietary software is not always available. We could build CFG without those
information with some tools, such as IDA [22], but the accuracy and coverage of
CFG cannot be guaranteed. Secondly, the CFI approaches usually cannot verify
the legitimacy of control flow transfer in dynamic code, which widely exists in
modern software. Lastly, they suffers from the problems of inefficiency and high
complexity [21].

218 M. Nie et al.

Taint analysis employs a dynamic tracing technique to detect exploits [11–13,
29,33,41]. It marks input data from tainted sample, and then monitors program
execution to track how the tainted attribute propagates and to check if the
tainted data is used in dangerous ways. However, as far as we know, all existing
taint analysis engines are unable to fully support analysis of the entire Intel
instruction set. Hence, the accuracy of the analysis results cannot be guaranteed.
Moreover, taint analysis needs to parse each instruction executed by the target
processes, and record all addresses of tainted data, The computation complexity
and complexity is not acceptable in real practice [36].

The prevention mechanisms, such as ASLR [26] and DEP [17], are adopted
to protect against malicious code exploits. More exploits leverage the ROP tech-
nique to evade the mechanisms. ROP is hard to detect because it uses the existing
legal instruction sequences to construct shellcode, instead of injecting shellcode.
Last Branch Recording (LBR) [23], a recent technique released with Intel proces-
sors, is used to analyze the executed indirect branch instructions to see if there
exists an excessively long chain of gadget-like instruction sequences. LBR-based
approaches [9,30] rely on hardware for instruction-level monitoring, which intro-
duces small runtime overhead and transparent operations. Unfortunately, these
approaches have some inherent drawbacks. The LBR stack can include only 16
records, and is shared by all running processes and threads. Hence, the stack may
not have enough space to record sufficient data. Moreover, these approaches can-
not observe the actual path of instruction execution between two indirect jumps,
thereby they cannot accurately count the number of instructions. Therefore, the
LBR-based approaches may not be accurate to analyze and detect exploits. Sim-
ilar to Xede, shadow stack and speculative code execution are adopted to detect
ROP. For example, Davi et al. [16] utilized shadow stack to detect ROP. How-
ever, the system is built upon the PIN subsystem and cannot instrument the
kernel code. Polychronakis et al. [32] used speculative code execution to analyze
non-randomized modules and is unable to detect exploits leveraging randomized
modules.

8 Summary

In this paper, we present the design and implementation of Xede, an exploit
detection system. Xede comprehensively detect different types of exploits, e.g.,
generated by pure code injections, pure ROP, and hybrid exploitation techniques.
We have implemented a prototype of Xede with QEMU. The evaluation demon-
strates that Xede can effectively detect different exploits according experiments
with samples and real world deployment on the Internet. In particular, with
real world deployment, Xede detects a large number of exploits that cannot be
captured by mainstream anti-virus software and exploits that raise abnormal
execution exceptions due to mismatched execution environments.

Acknowledgement. We would like to thank our shepherd Christopher Kruegel, and
the anonymous reviewers for their insightful comments. This work is partially sup-
ported by the National Basic Research Program of China (973 Program) (Grant

Xede: Practical Exploit Early Detection 219

No.2012CB315804), and the National Natural Science Foundation of China (Grant
No.91418206).

References

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security,
pp. 340–353. ACM (2005)

2. Amnpardaz. http://jevereg.amnpardaz.com/
3. Anubis. https://anubis.iseclab.org/
4. Flame Malware. http://en.wikipedia.org/wiki/Flame malware
5. Sony Pictures Entertainment hack. http://en.wikipedia.org/wiki/Sony Pictures

Entertainment hack
6. Stuxnet. http://en.wikipedia.org/wiki/Stuxnet
7. Carlini, N., Wagner, D.: Rop is still dangerous: breaking modern defenses. In:

USENIX Security Symposium (2014)
8. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,

M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 559–572. ACM
(2010)

9. Cheng, Y., Zhou, Z., Yu, M., Ding, X., Deng, R.H.: Ropecker: a generic and prac-
tical approach for defending against rop attacks. In: Symposium on Network and
Distributed System Security (NDSS) (2014)

10. contagiodump. http://contagiodump.blogspot.com/
11. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham,

P.: Vigilante: end-to-end containment of internet worms. ACM SIGOPS Oper.
Syst. Rev. 39, 133–147 (2005). ACM

12. Crandall, J.R., Chong, F.: Minos: architectural support for software security
through control data integrity. In: International Symposium on Microarchitecture
(2004)

13. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the
12th ACM Conference on Computer and Communications Security, pp. 235–248.
ACM (2005)

14. CVE-2012-0158. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
15. CVE-2014-1761. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1761
16. Davi, L., Sadeghi, A.R., Winandy, M.: Ropdefender: a detection tool to defend

against return-oriented programming attacks. In: Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, pp. 40–51.
ACM (2011)

17. Data Execution Prevention. http://en.wikipedia.org/wiki/Data Execution
Prevention

18. exploit-db. http://www.exploit-db.com/
19. FireEye. http://www.fireeye.com/
20. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture

for intrusion detection. In: Proceedings of the 10th Network and Distributed Sys-
tem Security Symposium, Febuary 2003

21. Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: over-
coming control-flow integrity. In: 2014 IEEE Symposium on Security and Privacy
(SP), pp. 575–589. IEEE (2014)

http://jevereg.amnpardaz.com/
https://anubis.iseclab.org/
http://en.wikipedia.org/wiki/Flame_malware
http://en.wikipedia.org/wiki/Sony_Pictures_Entertainment_hack
http://en.wikipedia.org/wiki/Sony_Pictures_Entertainment_hack
http://en.wikipedia.org/wiki/Stuxnet
http://contagiodump.blogspot.com/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0158
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1761
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://www.exploit-db.com/
http://www.fireeye.com/

220 M. Nie et al.

22. IDA Pro. https://www.hex-rays.com/products/ida/
23. Intel: Intel 64 and IA-32 Architectures Software Developerś Manual, Febuary 2014
24. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through VMM-based

“Out-Of-the-Box” semantic view reconstruction. In: Proceedings of the 14th ACM
Conference on Computer and Communications Security, October 2007

25. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: Accessminer:
using system-centric models for malware protection. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security, pp. 399–412. ACM
(2010)

26. Larsen, P., Homescu, A., Brunthaler, S., Franz, M.: SoK: automated software diver-
sity. In: Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP
2014 (2014)

27. LastLine. https://www.lastline.com/
28. Mason, J., Small, S., Monrose, F., MacManus, G.: English shellcode. In: Proceed-

ings of the 16th ACM Conference on Computer and Communications Security, pp.
524–533. ACM (2009)

29. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software (2005)

30. Pappas, V., Polychronakis, M., Keromytis, A.D.: Transparent rop exploit mitiga-
tion using indirect branch tracing. In: USENIX Security, pp. 447–462 (2013)

31. Polychronakis, M., Anagnostakis, K.G., Markatos, E.P.: Comprehensive shellcode
detection using runtime heuristics. In: Proceedings of the 26th Annual Computer
Security Applications Conference, pp. 287–296. ACM (2010)

32. Polychronakis, M., Keromytis, A.D.: Rop payload detection using speculative code
execution. In: 2011 6th International Conference on Malicious and Unwanted Soft-
ware (MALWARE), pp. 58–65. IEEE (2011)

33. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks for advertised honeypots with automatic signature generation. ACM
SIGOPS Oper. Syst. Rev. 40, 15–27 (2006). ACM

34. Rabek, J.C., Khazan, R.I., Lewandowski, S.M., Cunningham, R.K.: Detection of
injected, dynamically generated, and obfuscated malicious code. In: Proceedings
of the 2003 ACM Workshop on Rapid malcode, pp. 76–82. ACM (2003)

35. Ratanaworabhan, P., Livshits, V.B., Zorn, B.G.: Nozzle: A defense against heap-
spraying code injection attacks. In: USENIX Security Symposium, pp. 169–186
(2009)

36. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and Privacy (SP), pp. 317–331.
IEEE (2010)

37. Secunia: Secunia vulnerability review 2015. Technical report, Secunia (2014).
http://secunia.com/vulnerability-review/

38. securityfocus. http://www.securityfocus.com/
39. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc with-

out function calls (on the x86). In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, October 2007

40. Snow, K.Z., Monrose, F.: Automatic hooking for forensic analysis of document-
based code injection attacks (2012)

41. Suh, G.E., Lee, J.W., Zhang, D., Devadas, S.: Secure program execution via
dynamic information flow tracking. ACM Sigplan Not. 39, 85–96 (2004). ACM

42. TCA Malware Analysis platform. http://www.tcasoft.com/

https://www.hex-rays.com/products/ida/
https://www.lastline.com/
http://secunia.com/vulnerability-review/
http://www.securityfocus.com/
http://www.tcasoft.com/

Xede: Practical Exploit Early Detection 221

43. VirusTotal. https://www.virustotal.com/
44. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Still: exploit code detection via static taint

and initialization analyses. In: 2008 Annual Computer Security Applications Con-
ference, ACSAC 2008, pp. 289–298. IEEE (2008)

45. WildFire. https://www.paloaltonetworks.com/products/technologies/wildfire.
html

46. XecScan. http://scan.xecure-lab.com/
47. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: Usenix Security,

pp. 337–352 (2013)

https://www.virustotal.com/
https://www.paloaltonetworks.com/products/technologies/wildfire.html
https://www.paloaltonetworks.com/products/technologies/wildfire.html
http://scan.xecure-lab.com/

	Xede: Practical Exploit Early Detection
	1 Introduction
	2 Background
	3 System Design
	3.1 Overview
	3.2 Dynamic Information Extractor
	3.3 Exploit Exception Detector
	3.4 Code Injection Detector
	3.5 Code Reuse Detector

	4 Implementation
	5 Evaluation
	5.1 Effectiveness Evaluation
	5.2 Case Study
	5.3 Performance Evaluation

	6 Discussion
	7 Related Work
	8 Summary
	References

