
Finding Unknown Malice in 10 Seconds: Mass Vetting for
New Threats at the Google-Play Scale

Kai Chen‡,†, Peng Wang†, Yeonjoon Lee†, XiaoFeng Wang†,
Nan Zhang†, Heqing Huang§, Wei Zou‡, Peng Liu§

†Indiana University, Bloomington
‡Institute of Information Engineering, Chinese Academy of Sciences

§College of IST, Penn State University

http://www.appomicsec.com

Background
• Android Malware

‒ Billions of mobile computing devices. 70% are Android.

‒ In 2014, 99% of mobile malware targets Android system

• Current Approaches
‒ Signature-based detection & Behavior-based detection

• Are they effective in malware detection?

Are they effective?
• Signature-based detection

‒ Cannot detect new malware: Over 160,000 new malware samples
created every day (Panda Security, 2014)

‒ Code obfuscation, e.g., DroidChameleon (AsiaCCS 2013)

• Behavior-based Detection
‒ Heavyweight information-flow analysis

‒ Require known suspicious behaviors (e.g., Dynamic code loading)

Can we design an approach that is:

• Highly efficient

• Detect malware with unknown behaviors

We achieve this goal using neither

signatures nor behaviors. But only

code comparison.

Observation: a unique business model

Attackers like to attach the same attack
payload to legitimate apps.

Results of Repackaging

Compare related apps, check
“different” code

Results of Repackaging
Detect code intersection in
apps with unrelated apps

Our approach: DiffCom Analysis

Sim-View Analysis

No

Yes Diff Analysis

Com Analysis

Suspicious?

Sim-View Analysis: An example

Sim-View Analysis: An example

Sim-View Analysis: An example

Sim-View Analysis: An example

Sim-View Analysis: An example

Sim-View Analysis: View graph

OnClick
OnClick

OnClick

OnClick

Sim-View Analysis: View Graph

OnClick
OnClick

OnClick

OnClick

OnDrag

OnTouch

OnClick
OnClick

OnListItemClick

OnClick

Another Entry Point

AlertDialog

Sim-View Analysis: Compare View Graphs

Onlick

OnClick

OnDrag

OnTouch

OnClick
OnClick

OnListItemClick

OnClick

AlertDialog

Onlick

OnClick

OnDrag

OnTouch

OnClick
OnClick

OnListItemClick

OnClick

AlertDialog

Can we avoid graph isomorphism analysis?

𝑂(𝑛2 ∙ 𝑀2) 𝑂(𝑐 ∙ 𝑀)

“Enemy” for scalability Goal

Sim-View Analysis: Challenge
• Challenge 1: A Graph edge = abstract relation

‒ The abstract relation could have arbitrary length

• Challenge 2: Switching branches changes node positions

Original Graph Challenge 1 Challenge 2

Our idea: Fix the nodes in the graph

• Step 1: view graph3D-view-graphv-core

• Step 2: Scalable comparison

Sim-View Analysis: v-core

Step 1: Accurate mapping: view graph3D-view-graphv-core

3D-View-Graph is a View Graph in which each node has a unique
coordinate.

‒ The coordinate is a vector <x,y,z>
‒ x is the sequence number in the view graph

‒ y is the number of outgoing edges of the node
‒ z is the depth of loop of the node

1

2

3

4

5

6

Sim-View Analysis: v-core

Step 1: Accurate mapping: view graph3D-view-graphv-core

A <1, 1, 0>; B <2, 2, 1>; C <3, 2, 1>; D <4, 1, 1>; E <5, 1, 0>; F <6, 0, 0>

Sim-View Analysis: v-core

Step 1: Accurate mapping: view graph3D-view-graphv-core

Sim-View Analysis: v-core

Step 2: Scalable comparison
‒ First, sub-graph-level comparison

‒ Second, app-level comparison

Feature 1: The similarity between two graphs is monotonically
correlate to the “distance” between two v-cores.

Feature 2: V-cores are sortable. We only need to compare a
v-core with its neighbors, but not all v-cores.

Localized global
comparison

Diff Analysis

• For apps having the same view and different signatures, the
different methods between the two apps may be malicious

• Challenge 1: How to quickly compare two apps and find the
different methods?

• Challenge 2: Are the different methods malicious?

Diff Analysis

• Challenge 1: How to quickly compare two apps and find the
different methods?

• Centroid on methods:

Control flow graph (CFG)3D-CFGm-core

m-core
<x,y,z,w>

Diff Analysis
• Challenge 2: Are the different methods malicious?

‒ Ads and other libraries

‒ Updated code (from the same author)

‒ Unharmful code

• Solution
‒ White-list of libraries

‒ Stand-alone analysis

‒ Sensitive APIs
• e.g., GetSimSerialNumber

• Avoid heavy-weight

information flow analysis

call

call

Com Analysis

• For the apps with different views, find the common code

• Challenge 1: Are the two apps really unrelated?

• Challenge 2: Is the common code really malicious?

Com Analysis

• Challenge 1: Is the two apps really unrelated?

• Correlation check
‒ Similar ideas with “Diff”

Rovio
Entertainment

Com Analysis

• Challenge 2: Is the common code really malicious?
‒ Library code: Ads, third-party libraries

‒ Code reuse: templates

• Approach
‒ White-listing popular libraries

‒ Training set: the methods not viewed as malicious by virustotal

• Report suspicious code: the method with dangerous APIs

Measurement – Scale of study

• Total apps collected : 1.2 million apps
‒ Duplicates removed using MD5

• App markets covered : 33

• # of apps collected from different markets
and region

‒ GooglePlay : 400,000+ apps
‒ Chinese app markets : 596,437 apps
‒ European app markets : 61,866 apps
‒ Other US stores : 27,047 apps

Measurement – False Positive

• Flagged apps by MassVet : 127,429 apps (10.93%)

• FDR (false-positive VS all detected) : 4.73%

• FPR (false-positive VS all apps analyzed) : < 1%

• Manually studied: 20/40 malware

FDR: 4.73%

Measurement – Coverage

• 2700 Randomly sampled apps
‒ Virustotal: 281 apps

‒ MassVet: 197 apps (70.11%)

‒ NOD32: 171 apps (60.85%)

‒ McAfee: 45 apps (16.01%)

‒ 21 apps (11%) apps missed by Virustotal

Measurement – Performance

• A server with 260 GB memory, 40 cores at 2.8 GHz and 28 TB
hard drives

• 9 seconds from the submission of the app to the completion
of the whole process on it.

500 apps
concurrent

9.95 seconds

Measurement – Landscape

• 35,473 (north America), 4,852 (Europe), 87,104 (Asia)

• Apps from Google Play: 7.61% are potentially harmful

• Virustotal confirmed 91,648 malware
‒ 4.1% were alarmed by at least 25 out of 54 scanners

Measurement – Existing defense

• Existing defense: Google Play indeed makes effort to mitigate
the malware threat

• Most malware we discovered were uploaded in the past 14
months

2014.6

2013.4

Measurement – Disappeared apps

• After uploading 3,711 apps to Virustotal (scan mode)
‒ 40 days later: 250 of them disappeared

‒ 90 days later: another 129 apps disappeared

‒ Among the 379 disappeared apps, 54 apps (14%) are detected by
Virustotal

upload 3,711 apps

2014.11 2014.12

250 disappeared

2015.2

129 disappeared

Measurement – Disappeared apps

• Track 2,265 developers of the 3,711 apps (2014/11~2015/02)
‒ Additional 2014 apps disappeared (all detected by MassVet)

‒ We did NOT check them by virustotal
• Google Play also looked into their common malicious components under the same

developers, but not across the whole market (may take long time).

• Our work is just the one can help them (in several seconds).

• Reappeared apps
‒ 604 confirmed malware (28.4%) showed up in Google Play

unchanged

‒ 829 apps showed up using different names

Measurement – Impact

• Distribution of downloads for malicious or suspicious apps in
GooglePlay

2000 apps:50,000+400 apps:1,000,000+

Measurement – Impact

• The distribution of rating for malicious or suspicious apps in
GooglePlay

3000 apps: 3.9

Measurement – Signatures

• Top 5 signatures used in apps

1644 1258

Measurement – Identities

• Top 5 signatures used by different identities

604 447

Conclusion
• We propose a new technique for efficient vetting of apps

for unknown malware
‒ Compare an app with all other apps on a market (DiffCom Analysis)

‒ Light-weight code analysis compared with other approaches

• We implemented MassVet and apply it to analyze 1.2
million apps.

• MassVet found 127,429 malware (20 likely to be zero days)

MassVet Available Now

http://www.appomicsec.com

Thank You! Questions?

