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Background
• Android Malware

‒ Billions of mobile computing devices. 70% are Android. 

‒ In 2014, 99% of mobile malware targets Android system

• Current Approaches
‒ Signature-based detection & Behavior-based detection

• Are they effective in malware detection?



Are they effective?
• Signature-based detection

‒ Cannot detect new malware: Over 160,000 new malware samples 
created every day (Panda Security, 2014)

‒ Code obfuscation, e.g., DroidChameleon (AsiaCCS 2013)

• Behavior-based Detection
‒ Heavyweight information-flow analysis

‒ Require known suspicious behaviors (e.g., Dynamic code loading)



Can we design an approach that is:

• Highly efficient

• Detect malware with unknown behaviors

We achieve this goal using neither 

signatures nor behaviors. But only

code comparison.



Observation: a unique business model

Attackers like to attach the same attack 
payload to legitimate apps.



Results of Repackaging

Compare related apps, check 
“different” code



Results of Repackaging
Detect code intersection in 
apps with unrelated apps



Our approach: DiffCom Analysis
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Sim-View Analysis: An example
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Sim-View Analysis: View graph
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Sim-View Analysis: View Graph
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Sim-View Analysis: Compare View Graphs
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Can we avoid graph isomorphism analysis?

𝑂(𝑛2 ∙ 𝑀2) 𝑂(𝑐 ∙ 𝑀)

“Enemy” for scalability Goal



Sim-View Analysis: Challenge
• Challenge 1: A Graph edge = abstract relation

‒ The abstract relation could have arbitrary length

• Challenge 2: Switching branches changes node positions

Original Graph Challenge 1 Challenge 2



Our idea: Fix the nodes in the graph

• Step 1: view graph3D-view-graphv-core

• Step 2: Scalable comparison



Sim-View Analysis: v-core

Step 1: Accurate mapping: view graph3D-view-graphv-core

3D-View-Graph is a View Graph in which each node has a unique 
coordinate.

‒ The coordinate is a vector <x,y,z>
‒ x is the sequence number in the view graph

‒ y is the number of outgoing edges of the node
‒ z is the depth of loop of the node
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Sim-View Analysis: v-core

Step 1: Accurate mapping: view graph3D-view-graphv-core

A <1, 1, 0>;   B <2, 2, 1>;   C <3, 2, 1>; D <4, 1, 1>;   E <5, 1, 0>;   F <6, 0, 0>



Sim-View Analysis: v-core

Step 1: Accurate mapping: view graph3D-view-graphv-core



Sim-View Analysis: v-core

Step 2: Scalable comparison
‒ First, sub-graph-level comparison

‒ Second, app-level comparison

Feature 1: The similarity between two graphs is monotonically
correlate to the “distance” between two v-cores.

Feature 2: V-cores are sortable. We only need to compare a 
v-core with its neighbors, but not all v-cores.

Localized global 
comparison



Diff Analysis

• For apps having the same view and different signatures, the 
different methods between the two apps may be malicious 

• Challenge 1: How to quickly compare two apps and find the 
different methods?

• Challenge 2: Are the different methods malicious?



Diff Analysis

• Challenge 1: How to quickly compare two apps and find the 
different methods?

• Centroid on methods: 

Control flow graph (CFG)3D-CFGm-core

m-core
<x,y,z,w>



Diff Analysis
• Challenge 2: Are the different methods malicious?

‒ Ads and other libraries

‒ Updated code (from the same author)

‒ Unharmful code

• Solution
‒ White-list of libraries

‒ Stand-alone analysis

‒ Sensitive APIs
• e.g., GetSimSerialNumber

• Avoid heavy-weight 

information flow analysis 

call

call



Com Analysis

• For the apps with different views, find the common code

• Challenge 1: Are the two apps really unrelated?

• Challenge 2: Is the common code really malicious?



Com Analysis

• Challenge 1: Is the two apps really unrelated?

• Correlation check
‒ Similar ideas with “Diff”

Rovio
Entertainment



Com Analysis

• Challenge 2: Is the common code really malicious?
‒ Library code: Ads, third-party libraries

‒ Code reuse: templates

• Approach
‒ White-listing popular libraries

‒ Training set: the methods not viewed as malicious by virustotal

• Report suspicious code: the method with dangerous APIs



Measurement – Scale of study

• Total apps collected : 1.2 million apps 
‒ Duplicates removed using MD5

• App markets covered : 33

• # of apps collected from different markets 
and region 

‒ GooglePlay : 400,000+ apps
‒ Chinese app markets : 596,437 apps 
‒ European app markets : 61,866 apps
‒ Other US stores : 27,047 apps



Measurement – False Positive

• Flagged apps by MassVet : 127,429 apps (10.93%)

• FDR (false-positive VS all detected) : 4.73%

• FPR (false-positive VS all apps analyzed) : < 1%

• Manually studied: 20/40 malware

FDR: 4.73%



Measurement – Coverage

• 2700 Randomly sampled apps
‒ Virustotal: 281 apps

‒ MassVet: 197 apps (70.11%)

‒ NOD32: 171 apps (60.85%)

‒ McAfee: 45 apps (16.01%)

‒ 21 apps (11%) apps missed by Virustotal



Measurement – Performance

• A server with 260 GB memory, 40 cores at 2.8 GHz and 28 TB 
hard drives

• 9 seconds from the submission of the app to the completion 
of the whole process on it.

500 apps 
concurrent

9.95 seconds



Measurement – Landscape

• 35,473 (north America), 4,852 (Europe), 87,104 (Asia)

• Apps from Google Play: 7.61% are potentially harmful

• Virustotal confirmed 91,648 malware
‒ 4.1% were alarmed by at least 25 out of 54 scanners



Measurement – Existing defense

• Existing defense: Google Play indeed makes effort to mitigate 
the malware threat 

• Most malware we discovered were uploaded in the past 14 
months

2014.6

2013.4



Measurement – Disappeared apps

• After uploading 3,711 apps to Virustotal (scan mode)
‒ 40 days later: 250 of them disappeared 

‒ 90 days later: another 129 apps disappeared

‒ Among the 379 disappeared apps, 54 apps (14%) are detected by 
Virustotal

upload 3,711 apps

2014.11 2014.12

250 disappeared

2015.2

129 disappeared



Measurement – Disappeared apps

• Track 2,265 developers of the 3,711 apps (2014/11~2015/02)
‒ Additional 2014 apps disappeared (all detected by MassVet)

‒ We did NOT check them by virustotal
• Google Play also looked into their common malicious components under the same 

developers, but not across the whole market (may take long time). 

• Our work is just the one can help them (in several seconds).

• Reappeared apps
‒ 604 confirmed malware (28.4%) showed up in Google Play 

unchanged

‒ 829 apps showed up using different names



Measurement – Impact

• Distribution of downloads for malicious or suspicious apps in 
GooglePlay

2000 apps:50,000+400 apps:1,000,000+



Measurement – Impact

• The distribution of rating for malicious or suspicious apps in 
GooglePlay

3000 apps: 3.9



Measurement – Signatures

• Top 5 signatures used in apps

1644 1258



Measurement – Identities

• Top 5 signatures used by different identities

604 447



Conclusion
• We propose a new technique for efficient vetting of apps 

for unknown malware
‒ Compare an app with all other apps on a market (DiffCom Analysis)

‒ Light-weight code analysis compared with other approaches

• We implemented MassVet and apply it to analyze 1.2 
million apps. 

• MassVet found 127,429 malware (20 likely to be zero days)



MassVet Available Now

http://www.appomicsec.com

Thank You! Questions?


