Automatic Polymorphic Exploit Generation for
Software Vulnerabilities

Minghua Wang!, Purui Su!, Qi Li?, Lingyun Ying!, Yi Yang!, and Dengguo
Feng!

! Laboratory of Trusted Computing and Information Assurance,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China,
{wangminghua, supurui, yly, yangyi, feng}@is.iscas.ac.cn
2 Institute of Information Security, ETH Zurich, Switzerland,
qi.li@inf.ethz.ch

Abstract. Generating exploits from the perspective of attackers is an ef-
fective approach towards severity analysis of known vulnerabilities. How-
ever, it remains an open problem to generate even one exploit using a
program binary and a known abnormal input that crashes the program,
not to mention multiple exploits. To address this issue, in this paper, we
propose PolyAEG, a system that automatically generates multiple ex-
ploits for a vulnerable program using one corresponding abnormal input.
To generate polymorphic exploits, we fully leverage different trampoline
instructions to hijack control flow and redirect it to malicious code in the
execution context. We demonstrate that, given a vulnerable program and
one of its abnormal inputs, our system can generate polymorphic exploits
for the program. We have successfully generated control flow hijacking
exploits for 8 programs in our experiment. Particularly, we have generat-
ed 4,724 exploits using only one abnormal input for IrfanView, a widely
used picture viewer.

Key words: software vulnerability, dynamic taint analysis, exploit gen-
eration

1 Introduction

Software vulnerability is one of the major threats to the computer system. Ex-
ploit generation from the perspective of attackers is one of the most effective
approaches for vulnerability assessment. Traditionally, exploit generation is per-
formed manually and requires prior knowledge of the vulnerabilities. However,
manually generating exploits is time-consuming and highly dependent on the
experience of the analysts, and cannot satisfy the demand for vulnerability as-
sessment and defense.

To address this issue, many exploit generation schemes have been proposed.
Brumley et al [9] proposed an approach to automatically generate exploits for
the potential vulnerabilities by comparing victim applications with their patched
versions. Lin et al. [15] presented a dynamic exploit generation method by mu-
tating a set of input values relevant to the execution of a vulnerable code lo-
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cation. The exploits they generated can only crash the programs so that their
approaches are not able to verify whether the vulnerability is used to execute
malicious code. Avgerinos et al. [3] proposed the first system to generate exploits
containing malicious code by source code analysis and preconditioned symbolic
execution. However, such approach cannot be used for the closed source software.

In this paper, we propose an automatic polymorphic exploit generation
(PolyAEG) system that aims to generate polymorphic exploits containing mali-
cious code by given program binary and an abnormal input causing it to crash.
To achieve PolyAEG, the following questions need to be answered.

In order to hijack the control flow and make sure malicious code execution,
(i)which input bytes should be modified? and (ii)what values should be assigned
to them?(iii)Based on the abnormal input, how can we diversify the exploit
generation for a vulnerable program?

To answer these questions, PolyAEG traces program execution and performs
dynamic taint analysis. During the taint analysis, PolyAEG detects all possible
hijacking points, generalizes the constraints for the current execution path and
identifies all user-controlled memory regions. When a hijacking point is detected,
PolyAEG leverages trampoline instructions and one shellcode under the current
runtime context, and accommodates them into the appropriate user-controlled
memory regions to ensure that the hijacked execution flow reaches the shellcode.
The data dependencies between the program input and the accommodated ele-
ments can be clearly identified by PolyAEG, so PolyAEG can find all relevant
input bytes. They should be modified for exploit generation.(answer 1)

In addition, as for an effective exploit, the values of the bytes to be modified
should satisfy both data dependencies mentioned above and the path constraints.
PolyAEG solves all the values for these bytes respectively, and use them to con-
struct the new input, i.e., the exploit. When the program runs with this exploit,
the control flow can be hijacked from the hijacking point and the trampoline
instructions together with the shellcode can appear at expected memory loca-
tions.(answer ii)

PolyAEG can diversify combinations of different trampoline instructions and
shellcode to generate polymorphic exploits. Moreover, PolyAEG is able to iden-
tify all possible hijacking points. For each hijacking point, PolyAEG performs
the same exploit generation procedure as above, which contributes to more ex-
ploits.(answer iii). The generated exploits can be used to systematically evaluate
the severity of the program vulnerability.

This paper makes the following contributions:

— We propose an PolyAEG architecture that can automatically generate poly-
morphic exploits by given program binaries and abnormal inputs. PolyAEG
performs dynamic taint analysis to extract the execution information, ana-
lyzes the layout of the memory to accommodate the shellcode and trampoline
instructions, and eventually constructs exploits by modifying relevant input
bytes.

— We propose a novel approach to produce exploits by diversifying combination-
s of trampoline instructions and shellcode. It is not only increase the chance
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for generating one effective exploit, but also contribute to polymorphic ex-
ploit generation, which is important for a systematic evaluation of a found
vulnerability.

— We implement PolyAEG and verify it by generating exploits for several real-
world program vulnerabilities. PolyAEG successfully generated control flow
hijacking exploits for each program. Especially, it generates 4,724 exploits for
IrfanView, a widely used picture viewer, using one abnormal input.

The remainder of paper is organized as follows: Section 2 introduces PolyAEG’s
overview. We present different phases for exploit generation in Section 3 to 5.
PolyAEG was evaluated with different vulnerable programs in Section 6. We
discuss limitations and future work in Section 7. Related work is presented in
Section 8 and conclusions are in Section 9.

2 Overview of PolyAEG

PolyAEG takes in one vulnerable program and one abnormal input, and gener-
ates polymorphic exploits. Figure 1 shows the architecture of PolyAEG. Basical-
ly, PolyAEG is performed in the following three phases: Dynamic Information
Extraction, Constraint Generation, and FExploit Generation.

— Phase 1: Dynamic Information Extraction. In this phase, we dynamically run
the vulnerable program with the given abnormal input that can crash the
program, trace each instruction and perform dynamic taint analysis to collect
execution information. We analyze the taint propagation procedure to detect
hijacking points of the control flow and extract tainted memory regions for
storing utilized trampoline instructions and shellcode.

— Phase 2: Constraint Generation. The goal of this phase is to generate the
path constraints which ensure that the hijacking point is reachable when the
program runs with the exploit as input. The path constraints are generated
based on the tainted execution information from Phase 1. They are represented
by a set of constraint formulas with the input data as variables to check.

— Phase 3: Exploit Generation. In Phase 3, we leverage trampoline instruction-
s to construct a trampoline instruction chain which redirects the program’s
execution to the shellcode. We accommodate the chain and the shellcode in-
to tainted memory regions. We eventually generate one exploit by modifying
the relevant input bytes according to specified data dependencies and path
constraints identified in previous phases. Diverse patterns of trampoline in-
struction chains and multiple alternatives for shellcode location contribute to
polymorphic exploit generation.

We will further discuss the details in the following sections.
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Fig. 1. The overview of PolyAEG.

3 Dynamic Information Extraction

An effective exploit must ensure the program’s execution could be hijacked and
the trampoline instructions and shellcode should be located at the appropriate
places in the memory when the program runs with it as input. Therefore, we need
to detect hijacking points, identify the path constraints restricting the execution
to the hijacking point, and extract the layout of user-controlled memory regions
that could be applied to accommodate trampoline instructions and the shellcode.

To achieve this, we trace the vulnerable program running with the abnor-
mal input and perform fine-grained dynamic taint analysis at byte level. We
enhance existing taint analysis approaches [11, 16] especially by constructing
iTPG (instruction-level Taint Propagation Graph) and GTSR(Global Taint S-
tate Record), which not only records taint propagation but supports backtrack-
ing analysis.

1TPG records the taint propagation information during the vulnerable pro-
gram running at instruction level. As is shown in Figure 2, a grey node represents
a memory taint source corresponding to the data coming from the program in-
put(e.g., files or network); a white node represents a tainted instruction. The
edges linking nodes represents the data flow dependency among tainted data.

GTSR records taint states of memory bytes, general registers and bit flags
in EFLAGS. Each item is represented by a 3-tuple < Taintld, TaintStat, iTN-
ode>, where Taintld denotes the identifier of each byte or bit, TaintStat denotes
whether it is tainted or not, and iTNode denotes a pointer which points to the
tainted instruction last modifying the byte indicated by Taintld. Note that, a
32 bit register is specified by four bytes in GTSR.

1TPG and GTSR reflect the runtime context about taint propagation. The
relationship between them is illustrated by Figure 2. When one tainted instruc-
tion ¢ modifies tainted bytes recorded in GTSR, a new iTPG node representing
ti will be added into iTPG. We find the last tainted instruction ¢’ that modified
those tainted bytes, and then link ¢i to ¢i’. Meanwhile, we update the correspond-
ing iTNode pointing ti’ before to point to #i. If executing ¢ also influences some
bit flags in EFLAGS, we handle it similarly.

From iTPG and GTSR, we can idenfity the relevant input bytes of a tainted
byte and the data dependencies between them. As is shown in Figure 2, a tainted



Automatic Polymorphic Exploit Generation 5

=== input: [ Jin] | ] ]

|
Taintld | TaintStat | iTNode
tmg!
| Taintld | TaintStat | iTNode N

|
|
- = = - - - ----:'\'\

T e | Taintld | Tainstat | iTNode ‘
i

tmgn ————=====-
tainted memory bytes records
‘ Taintld ‘ TaintStat ‘ iTNode ‘
™G register bytes records

[ Taintld | Tainttat | iTNode boee.._______cceee™"

EFLAGS bits records
GTSR

Fig. 2. iTPG, GTSR and TMG.

byte tb corresponds to one item in GT'SR. The ¢TNode points to a node in iTPG
which represents the tainted instruction last modifying ¢b. Backtracking along
1TPG@ from this node to taint source nodes, we obtain a trace consisting of record-
ed tainted instructions. From that, we can identify the tb’s relevant input bytes
in;, ...,in; and their data dependencies value(th) = f(value(in;), ..., value(in;)),
where f can be educed by the semantics of the tainted instructions within the
trace.

During dynamic taint analysis of the vulnerable program, we detect hijack-
ing points by checking if tainted data are used in indirect control transfer(i.e.,
loaded on EIP) with ret, jmp and call instructions. When a hijacking point is
detected, we identify the layout of tainted memory areas and path constraints.
A tainted memory area consists of successive tainted bytes. We denote it as -
mg(tainted memory garget). It can be expressed as <start, end>, where start
indicates the starting address of this area and end indicates the ending address.
We extract all the tmg, denoted as TMG, from GTSR, and will utilize them to
accommodate shellcode and trampoline instructions. Path constraints are iden-
tified by analyzing the executed path indicated by ¢TPG. We discuss it in the
next section.

4 Constraint Generation

The exploits are generated by modifying relevant input bytes. The modifications
should satisfy specified predicates that guarantee the program can execute to the
hijacking point, especially when the input contains checksum fields.To ensure the
hijacking point is reachable, we identify all “input-derived” branches within the
path to the hijacking point, and generalize the constraints which reflect all the
corresponding branch-taken results.
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We denote “input-derived” branches as tainted branches. At each tainted
branch, we identify the relevant input bytes that influence its branch-taken re-
sult, and generalize the corresponding constraints. A tainted branch instruction
corresponds to an ¢TPG node in iTPG. Backtracking along iTPG from this n-
ode to taint source nodes, we can obtain the relevant input bytes and an iTPG
nodes sequence which represents a trace of recorded tainted instructions. The
trace can be used to symbolically generalize constraints for this tainted branch. In
this paper, we utilize Z3 [12] which is a high-performance SMT solver to achieve
this. First, we assign the relevant input bytes to different symbolic variables, and
then perform concolic symbolic execution for each tainted instruction within the
trace. At the branch instruction, since the corresponding bits in EFLAGS indi-
cate the branch-taken result, we generate constraint formulas according to their
values in SMT format [4].

Path constraints generated at tainted branches definitely guarantee that the
hijacking point can be reached. However, it may have side effects, such as the
following example.

if (strcmp (taintstr,"http"))
goto loc_1;
else
goto loc_2;
loc_1:
//do sth causing the return address overwritten.
s
return; // hijacking point!
/7
loc_2:
return;

If taintstr is “xttp”, the hijacking point can be reached and the correspond-
ing constraint will be generated as “taintstr[0]! = h” at one branch instruc-
tion in stremp. However, according to the constraint, when taintstr is “hxtp”,
the hijacking point cannot be reached which is obviously incorrect. If we gen-
eralize constraints when stremp returns instead of generalizing constraints at
tainted branches within stremp, we can obtain “taintstr[0]! = hl[taintstr[1]! =
t||taintstr[2]! = t||[taintstr[3]! = p” which makes more sense.

To solve this problem, we perform constraint generation primarily at tainted
branches, and secondarily at tainted library calls. When a tainted library func-
tion is called, we pause tainted branches constraint generation procedure, and
identify the return address and the arguments of the function. When the function
returns, we generate constraint formulas with the tainted arguments as symbolic
variables according to the function’s semantics and return result. After that, we
resume tainted branches constraint generation. In our implementation, we han-
dle comparison library functions for strings or memory such as stremp, strncmp,
memcpy etc. They are commonly used in vulnerable programs and influence
whether hijacking points can be reached.
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5 Exploit Generation

The exploit generation procedure is conducted when one hijacking point is de-
tected. According to current execution context, we construct a trampoline in-
struction chain consisting of different trampoline instructions to redirect the
control flow to the shellcode. Diverse patterns of trampoline instruction chains
enable the variety of generated exploits. Together with the shellcode, the tram-
poline instructions within an adopted trampoline instruction chain should be
accommodated into the tainted memory regions, since they must be contained
within the exploit.

To construct the exploit, we find all relevant input bytes for the shellcode
and the trampoline instructions within the chain. Then, we modify them to the
appropriate values to ensure the expected exploiting procedure, i.e., when the
vulnerable program runs with the generated exploit, 1)the utilized trampoline
instructions and the shellcode can appear at the expected locations, 2)the control
flow can be taken over at the hijacking point, and 3)the trampoline instructions
are executed one by one until the execution of the shellcode eventually.

5.1 Trampoline Instruction Chain Construction

We mainly leverage three types of trampoline instructions to construct a tram-
poline instruction chain.

— {call/jmp register} For this type of trampoline instructions, the only operand
is register. Normally, eight general registers can be used as the operands of the
call/jmp instructions. Therefore, we can obtain 16 trampoline instructions.

— {call/jmp [register + offset]} The only indirect memory operand is decided
by eight general registers and an offset. In this paper, the offset range is set
between -256 and 256, and then we can construct 8192 trampoline instructions.

— {successive instructions sequence} Each trampoline of this type is a sequence
of successive instructions in the code sections loaded into the process address
space. They act as one instruction during executing, so we regard them as one
trampoline instruction. We only consider one trampoline instruction of this
type, i.e., pop, pop, ret, in this paper. It is commonly utilized for SEH exploits.

Given a trampoline instruction I, we can accurately compute its execution
target address which is denoted as I.target in the current runtime context. Only
when Itarget is in one tmg, i.e., tmg.start<I.target<tmg.end, it is considered as
a candidate for constructing a trampoline instruction chain. We denote this tmg
as Itmg. Therefore, we can obtain a set of candidate trampoline instructions
Cand = {I|tmg.start < I.target < tmg.end,tmg € TMG}.

We denote a trampoline instruction chain as TrampChain=Iy,I; --- , I,
where 1<n<|Cand|, Iy,I;---,I, € Cand and different from one another. A
successful execution redirection by them is illustrated with the dotted line in
Figure 3, where I.addr represents the I’s memory address in the process ad-
dress space and I.code represents the opcode of I. We can obtain the following
characteristics:
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(i)Ip.addr replaced the tainted data used in indirect control transfer(i.e., the
tainted return address or function pointer).

(ii)fj41.code is accommodated at I;.target, where 0<j<n;

(iii)shellcode s is accommodated at I,,.target.

o5 ste e dptarget I,.target I,.target
jmp/call eax: 1, addr - -

\\‘ /,/,,4-”"--;\\\\‘ /,r'/ \\*
oax Io,tmgl % |[,Atmg| VA | 1,,.tmg| V A |

1;.code Ir.code

w—

Fig. 3. The demonstration of a TrampChain.

Inspired by the characteristics above, we construct TrampChains by analyz-
ing all the possibilities of combining different candidate trampoline instructions
in Cand. Then we select the TrampChains that meet the following three criteria.

(i) Ip.addr can be found in the unrandomized modules loaded into the process
address space;

(ii) len(Ij11.code) < I;.tmg.end — I;.target, for 1<j<n;

(iii) I,.tmg.end — I,,.tmg.start >= len(s);

There may be address conflicts in accommodating the trampoline instruc-
tions in a TrampChain. We mainly consider two cases of address conflicts:(i) I;
and [ are accommodated in the same tmg and I; is overlapped by I, where
0<j<k<n, (ii)I; is overlapped by the return address pushed when one call tram-
poline instruction I,,, executes. We solve these conflicts as follows.

The address conflicts for case (i) contain two situations respectively shown
in Figure 4(a),(b). For the former situation, i.e., Iy_1.target < I;_;.target <
(Iy—1.target + len(Iy.code)), we try to put Ix.code into another memory area in
this tmg which is long enough and not occupied by trampoline instructions, for
instance, at I_1.target’. Meanwhile, we utilize an extra jmp instruction which
is accommodated at I_q.target to reach that position. For the latter situation,
ie., I_1.target < Iy_j.target < (I;_1.target+len(l;.code)), it cannot be solved
and the corresponding trampoline instruction chain under construction cannot
be used to generate a valid exploit.

Iy .target | | I .target | Iiptarget’ Lintarget) | Iptarget

-

Jmp offset

-

~ — —_—

(a)

Fig. 4. Address conflicts for case(i) and the solutions.
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For the case (ii), for any 0< j < n, if j>m>0, the return address of I,
will corrupt I; that has not executed, so the trampoline instruction chain will
be destroyed. This address conflict cannot be solved and we discard the chain.
However, if j<m<n, since I; finishes executing before I,,,, the execution flow to
the shellcode will not be influenced. In this situation, we enlarge the length of I;
from len(I;) to len(I;)’, as is shown in Figure 5. We then use len(1;)’ to solve
the following address conflicts related to I;.

la— lenm)’ [ len()’ —»
| len(1) » | | = len(1) »|
: | |

Fig. 5. Address conflicts for case(ii) and the solutions.

Diverse trampoline instruction chains can contribute to polymorphic exploit
generation for the vulnerable program. Meanwhile, we know that the size of
I,,.tmg may be larger than len(s). Besides I,.target, s has multiple alterna-
tives to locate itself, i.e., the addresses before or after I,.target, as is shown in
Figure 6. We can enumerate all alternative positions for locating s in I, .tmg
to enable more exploits by leveraging an extra jmp instruction at I,.target if
needed. Address conflicts may happen in this situation as well. We use a similar
approach to resolve them.

I,.target

,,,,[mg|...W ‘/ 2/, ? Z

A

w
[

Jmp

Fig. 6. Multiple alternatives for shellcode location in I,,.tmg.

Although tmgs may be loaded at different places because of stack or heap
randomization when the program runs again, the offset between Itarget and
Ltmg.start will keep the same. After I seizes the program’s execution, the other
trampolines within the TrampChain can be surely executed one after another as
expected and the shellcode will get executed ultimately.

Our approach also works well when DEP is enabled. Since we are able to
acquire the executable properties of tainted areas at runtime, we can construct
a TrampChain on executable tmgs to bypass it.
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5.2 Exploit Construction

If the hijacking point is detected and we finish accommodating the trampoline
instruction chain and the shellcode without address conflicts in the tainted mem-
ory regions, we can finally construct the exploit by modifying all relevant input
bytes.

call/jmp eax [

77

exploit
tainted memory areas I

Fig. 7. The demonstration of exploit construction.

Figure 7 demonstrates the exploit construction.The hacked return address
or function pointer is replaced by Iy.addr. The other instructions within the
TrampChain and the shellcode are correspondingly accommodated at the previ-
ous instruction’s target address. Any tainted byte tb is relevant to specific input
bytes in;, ..., in; and satisfy the formula value(tb)=f(value(in;), ..., value(in;)),
as is discussed in Section 3. We collect all such formulas for all accommodated
bytes and submit them to a SMT solver [12] together with the path constraints
that guarantee the hijacking point can be reached. If we successfully obtain the
satisfying answers to all relevant input bytes, the exploit can be constructed by
only modifying these input bytes to such new values.

Note our method can also be applied when only partial bytes(i.e., not 4-
bytes) are controlled in the hacked return address or function pointer, which
traditionally means insufficient control over the program’s execution so that
exploiting cannot be successful. We enumerate all possible values of the hacked
return address or function pointer by altering the values of its controlled bytes. If
there exists one alternative equivalent to one available trampoline’s address, we
are able to hijack the program’s execution and conduct the following execution
flow redirection. Our current approach for this case works well in the systems
without module randomization. We leave that as our future work.

6 Evaluation

We developed PolyAEG based on QEMU [5]. We modified QEMU to support
process identification, dynamic instrumentation, system call interception and
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dynamic taint analysis. We use Z3 [12] to generalize path constraints and query
satisfying answers. We searched trampolines’ addresses from the modules loaded
into the vulnerable process. We generate trampolines’ opcodes according to Intel
assembly syntax. Shellcodes are selected from Metasploit [2]. We produce diverse
exploit data containing trampolines and shellcode based on the program input,
and eventually write them into files respectively as final multiple exploits. In all,
PolyAEG consists of approximately 30,000 lines of C/C++ code. We evaluated
PolyAEG on a Linux machine with a 3.2 GHz Intel(R) Core(TM) 15-3470 CPU,
500 GB hard disk and 4 GB RAM. We used 8 real world vulnerable programs.
Their information are shown in Table 1. They all were performed in Windows
XP SP2, QEMU’s guest OS.

Table 1. List of programs that PolyAEG generated exploits for.

Program Advisory ID. Input Size|Type of hijacking points
IrfanView v3.99 CVE-2007-2363 2648 return address
Mp3 CD Ripper v2.6| CVE-2011-5165 4432 return address
WAV Converter v1.5 | CVE-2010-2348 8208 function pointer
CoolPlayer v2.19.2 CVE-2009-1437 601 return address
Aviosoft DVD Player| CVE-2011-4496 1472 return address
FreefloatFtp v1.00 |CNNVD-201302-349 981 return address
AutoPlay v1.33 CVE-2009-0243 701 function pointer &
return address

Inic\z:;ztg];o\%r.ﬂl(;ad N/A 2340 return address

6.1 Method Validation

We use a test case to illustrate the process of exploit generation for vulnerable
programs. For convenience, we present it using the statistics collected from the
runtime context. They might be different as the program runs again. However,
the offset between a trampoline’s target and the corresponding tmg’s starting
address would be unchanged, as mentioned in Section 5. It guarantees the correct
execution flow redirection.

Freefloat Ftp will crash when it processes malformed remote user commands.
In this experiment, we sent a user command(a string consisting of 1024 ‘A’)that
could crash it. PolyAEG performed dynamic taint analysis and showed that
when “ret 0x8” at 0x00402ebb was executed, the taint data ‘0x41414141° would
be loaded to FIP as a return address. Therefore, PolyAEG detected one hijacking
point.

We used 338-bytes shellcode BIND shown in Table 5 to produce exploits. Ta-
ble 2 shows candidate trampoline instructions for the vulnerable program. We
denote Clandy, as the set of trampoline instructions whose corresponding tmg’s
size is larger than the shellcode, while Candg is the ones whose corresponding
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tmg’s size is smaller than that. We know that call esp and call [ebp+0x14] could
be employed as I,, within TrampChain, since their corresponding tmgs were large
enough to accommodate the shellcode. In addition, only the addresses of call edi
and call esp were available in the code sections of the process address space, they
could be employed as Iy within TrampChain. After analyzing different possibili-
ties to construct TrampChains with these trampolines, we obtained four effective
TrampChains shown in Table 3, with #ezploit representing the corresponding
count of generated exploits.

Table 2. The Cand of Freefloat Ftp when using shellcode BIND.

Cand |trampoline target tmg

Cands | call edi 0x911b24|<0x911b24,0x911c4d >

Candy, call esp 0xc0fc2c | <0xc0fb25,0xc0fef9>
call [ebp+0x14]|0x911850({<0x911735,0x911b09>

We choose the fourth TrampChain shown in Table 3 to elaborate the exe-
cution flow redirection. The trampolines applied within the TrampChain were
shown in Table 4. For call esp, as Iy, we used its address 0x7¢934393 which was
found in ntdll module and placed it at the stack space where stored the tainted
return address, i.e., 0xc0fc20. As for call edi and call [ebp+0x14], they were put
at the previous instruction’s target respectively. We used their opcodes. The ex-
ecution flow was redirected as follows: call esp initially hijacked the program’s
execution when “ret 0x8” was called. The execution flow reached 0xcOfc2c where
call edi was placed. Then call [ebp+0x14] at 0x911b24 gained the execution flow
after executing call edi. Finally, the shellcode located at 0x911850, the target
address of call [ebp+0x14], got executed successfully.

Table 3. TrampChains and the corresponding number of generated exploits.

Tramp Chain #exploit
call esp 128
call esp — > call [ebp+0x14] 37
call edi — > call [ebp+0x14] 102
call esp — > call edi — > call [ebp+0x14]| 100

Multiple alternatives in tmg<0x911735,0x911b09> were available for accom-
modating the shellcode besides 0x911850. We put the shellcode at other places
in this ¢tmg and leveraged an extra jmp at 0x911850 to reach the shellcode. Thus,
we obtained multiple exploits (i.e., 100) under this TrampChain.

The exploits were eventually constructed by modifying all relevant input
bytes according to the path constraints and the data dependencies between ac-
commodated bytes and the program input. We validate them by running the
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vulnerable program. They turned out to be effective and could be applied to
exploit the program.

Table 4. The statistics of trampolines in the 4th TrampChain.

I |trampoline target | address |contents of I

Io|call esp 0xc0fc2c | 0xc0fc20 |\x93\x43\x93\x7c

Ii|call edi 0x911b24| 0xc0fc2c |\xff\xd7

I | call [ebp+0x14]|0x911850|0x911b24 |\x33\xc0\xc6\xc0\x14\xf\x14\x28

Diverse patterns of TrampChains and multiple choices for shellcode accom-
modations contribute to polymorphic exploit generation. Note that the length
of the shellcode decides the last trampoline leveraged(i.e., I,,) to construct a
TrampChain. Thus, if another shellcode with a different length is leveraged, we
can obtain another set of different TrampChains. Further, more exploits are
available.

6.2 Polymorphic Exploit Generation

PolyAEG generated polymorphic exploits for 8 real world vulnerable programs.
It identified 9 hijacking points. Of these, AutoPlay had two hijacking points.
Both of them could be leveraged to generate exploits. In the experiments, we
used AutoPlay; and AutoPlay, to denote the program with different hijacking
points. Exploits were generated by hijacking function pointers in WAV Converter
and AutoPlays. In other programs, PolyAEG generated exploits by hijacking
return addresses.

PolyAEG could generate exploits containing various shellcode. We select-
ed one shellcode for each vulnerable program randomly. Their properties are
shown in Table 5. Table 6 illustrates the statistics about polymorphic exploit
generation.|Patrn| is the number of effective TrampChains and #exploit is the
number of generated exploits. Among these vulnerable programs, PolyAEG gen-
erated the maximum number of exploits for IrfanView. The main reason is that
IrfanView had a broad memory area to accommodate the shellcode. CoolPlayer
had the second quantity of exploits with the most patterns of trampoline instruc-
tion chains. The produced exploits with various attacking patterns are beneficial
for systematically evaluating the vulnerability in CoolPlayer.

As GS security cookie protection [1] has been imported, the successful rate
to exploit by hijacking an overflowed return address has reduced. Exploiting
SEH(Structured Exception Handler) is a more effective and practical exploiting
method. However, safeseh mechanism was introduced to prevent such exploits in
Windows operating systems. Despite all this, SEH exploits can successfully be
produced by our approach. Since not all modules loaded by a process arm with
safeseh, we choose trampoline instructions in non-safeseh modules to bypass this
protection mechanism. AutoPlay,; and WAV Converter are such samples that we
handled in this way.
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Table 5. The properties of shellcodes.

ID |Functionality Length| ID |Functionality Length
CMD |spawn a shell 21 |CALC|pop up a calculator| 226
MSG |pop up a message box 45 | RVSE |bind reverse tcp 366

ADD |add a new local account| 233 |NTPD|popup a notepad 86
DWN |download and execute 297 | BIND |listen at port 4444 | 338

Table 6. The statistics of polymorphic exploit generation for all programs.

Program shellcode||Patrn|| #exploit| |Program shellcode||Patrn|| #exploit
IrfanView DWN 3 4724 Mp3CDRipper| ADD 1 3399
FreefloatFtp| BIND 4 367 WAV Converter| CALC 4 180
CoolPlayer CMD 29 3750 Internet DMgr | NTPD 3 112
AutoPlay; MSG 3 282 Aviosoft DTV

AutoPlaya MSG 1 64 Player RVSE L 126

Address conflicts could be well addressed. For instance, in an exploit of WAV
Converter, pop,pop,ret was used as the trampoline instruction to hijack the pro-
gram’s execution and it would be overwritten if shellcode were located at its
target address. To solve this problem, the shellcode was stored at a address be-
fore pop,pop,ret and jmp was used to redirect the execution flow to the shellcode.

In conclusion, PolyAEG is capable of generating exploits automatically and
polymorphically for vulnerable programs. The polymorphic exploits generated
with various attacking patterns will be conductive to systematically assess the
severity of the vulnerabilities.

6.3 Performance Overhead

The overhead is dominated by the cost on dynamic taint analysis and exploit
generation. The former is basically decided by recording taint propagation, and
the latter is mainly decided by solving constraints. Figure 8 shows the quanti-
ties of tainted instructions(#tainted inst), and the average counts of constraint
formulas(#constraints) and symbolic variables(#variables) for one exploit gen-
eration. #tainted insts could reflect the overhead of taint propagation for the
program. Both #constraints and #wariables indicated the overhead of solving
constraints to construct exploits.

Figure 9 presents the time overhead of generating one exploit for each pro-
gram. Mp3 CD Ripper and WAV Converter cost far more time than the others
because they cost the most both on dynamic taint analysis and constraint solv-
ing. Freefloat Ftp ranked third since it had to solve the most constraints amongst
all the programs except for Mp3 CD Ripper and WAV Converter.

We evaluated memory overhead of polymorphic exploit generation for each
program. We used %MEM, i.e., the program’s share of the physical memory, to
present memory cost. It was mainly dominated by the quantity of all produced
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Fig. 8. The statistics about tainted instructions, constraint formulas and symbolic
variables for all programs.

exploits and the expense for each exploit generation. From Figure 10, we know
that both of these factors contributed to the highest cost of Mp3 CD Ripper
amongst these programs. In addition, AutoPlay2 not only cost the least memory
on generating one exploit, which was indicated as Figure 8, but also had the least
exploits. It thus consumed the lowest memory resource.

g 2.00
= 1.60 >
kS }/
2 1.20
o
£ 080
£ 040
g - -/
— -A
& 0.00
o)
= & o3 S o 5 5 5
:LE) R & S\rﬁb &8& §\‘§ 8\%“\ \Q@ QQ\% e 4@‘@ Q}QQ@
.= & S 3§
= & I q@c i ko é@&@ ?{\Q& AC’Q ,\JGQ
A$ .@%c @Y’ $\Q
¥

Fig. 9. The time overhead on one exploit generation.

In summary, as an off-line exploits generation system, PolyAEG has reason-
able overhead on both time and memory consuming. We currently have little
consideration on optimization of constraint solving. We will further handle it by
eliminating duplicated constraints and simplifying the symbolic variables.

7 Limitations and Future Work

Our approach has some limitations. First, PolyAEG generates control flow hi-
jacking exploits. It makes limited effort to bypass ASLR and DEP. Second, par-
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Fig. 10. The memory overhead on polymorphic exploit generation.

tially controlling to a hacked return address or function pointer is an obstacle
to exploiting. PolyAEG can produce exploits only under specified conditions.
Third, shellcode is wholly stored. We do not consider the situation when shell-
code is split into several units and placed into different tainted areas. In addition,
PolyAEG does not identify all possible paths to a hijacking point due to high
expense on whole-system symbolic execution [3, 10]. But it generalizes path con-
straints that guarantee a reliable path to hijack program’s execution.

We plan to extend PolyAEG to overcome those limitations in future work.
We will also enhance PolyAEG to deal with more advanced exploitable situa-
tions about heap corruptions, use-after-free, and so on. Moveover, it is still an
open problem to exploit non-control flow hijacked vulnerabilities, and we will do
further research on it.

8 Related Work

Dynamic Taint Analysis. Dynamic taint analysis [17] can be used to tackle
problems such as protocol reverse engineering, vulnerability detection, exploit
generation, signature generation and so on. A few of general frameworks are
available, such as [16, 11, 6, 18, 19]. TaintCheck [16] is one of the first dynamic
taint analysis tools for protecting binary program from memory corruption at-
tacks. TaintEraser [19] applies taint analysis for binaries to identify information
leaks. Dytan [11] is flexible for taint analysis, allowing users to customize taint
sources, sinks and propagation policy. Minemu [6] provides fastest taint analysis
despite the limited functionally.

libdft [14] is a fast and reusable data flow tracking framework. It provides API
for building dynamic taint analysis tools, e.g., libdft-DTA, and can be tailored
to implement problem-specific instances.

Our enhanced taint analysis techniques with supporting backtracking analy-
sis can be applied to support various analysis situations. Specifically for exploit
generation, it enable us to accurately identify control flow hijacking, path con-
straints and data flow dependency.
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Automatic Exploit Generation. Thanassis Avgerios et al. [3] proposed
AEG for potential buggy programs. They used preconditioned symbolic exe-
cution to find exploitable paths and generated exploits by solving path predi-
cate and exploit predicate. AEG worked solely on close source programs, and
used hardened memory address of shellcode instead of trampolines, which would
failed to exploit under address randomization. By contrast, PolyAEG aimed to
generate exploits for vulnerable binary programs, and leveraged trampolines to
redirect the execution flow to shellcode. Thus the generated exploits turned out
to be more effective and practical to exploit a vulnerable program.

S. Heelan et al. [13] described a technique to automatically generate an ex-
ploit by given a crashing input for a vulnerable program by employing jump-to-
register trampolines. However, few candidates for trampolines limited the ability
of polymorphic exploit generation. PolyAEG provided multiple alternatives for
trampolines, and leveraged them to construct diverse trampoline instruction
chains. It not only increased the successful rate to generate one effective exploit,
but enabled to generate multiple exploits which contributed to systematical e-
valuation of the severity of the vulnerability.

S.Cha et al. implemented MAYHEM [10] for finding exploitable bugs in bina-
ry programs and proving with working shell-spawning exploits. They proposed
hybrid symbolic execution and index-based memory modeling that made ex-
ploitable bugs discovered efficiently. However, the exploit generation policy was
similar to related works above. Thus, polymorphic exploit generation was not
addressed in their system.

Brumley et al. [9, 8, 7]and Lin, Z.Q et al. [15] also gave solutions to automatic
exploit generation problems. However, the exploits they generated in their works
were not the same with ours. Their exploits were simply aimed to make the
program run in an unsafe state, such as crashing or consuming 100% CPU,
instead of executing a injecting shellcode.

9 Conclusions

We propose PolyAEG, a system that automatically generates multiple exploits
for a vulnerable program using one corresponding abnormal input. To generate
different polymorphic exploits, we fully leverage trampolines to construct diverse
trampoline instruction chains in order to hijack execution flow and redirect it to
shellcode within the runtime context. We used PolyAEG to successfully generate
exploits for 8 vulnerable binary programs. In particular, we have generated 4,724
exploits using only one abnormal input for IrfanView, a widely used picture
viewer.
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