
Perplexed Messengers from the Cloud: Automated
Security Analysis of Push-Messaging Integrations

Yangyi Chen1∗, Tongxin Li2∗, XiaoFeng Wang1, Kai Chen1, 3 and Xinhui Han2

1Indiana University Bloomington
2Peking University

3Institute of Information Engineering, Chinese Academy of Sciences

ABSTRACT
In this paper, we report the first large-scale, systematic study on
the security qualities of emerging push-messaging services, focus-
ing on their app-side service integrations. We identified a set of
security properties different push-messaging services (e.g., Google
Cloud Messaging) need to have, and automatically verified them in
different integrations using a new technique, called Seminal. Sem-
inal is designed to extract semantic information from a service’s
sample code, and leverage the information to evaluate the security
qualities of the service’s SDKs and its integrations within different
apps. Using this tool, we studied 30 leading services around the
world, and scanned 35,173 apps. Our findings are astonishing: over
20% apps in Google Play and 50% apps in mainstream Chinese app
markets are riddled with security-critical loopholes, putting a huge
amount of sensitive user data at risk. Also, our research brought to
light new types of security flaws never known before, which can be
exploited to cause serious confusions among popular apps and ser-
vices (e.g., Facebook, Skype, Yelp, Baidu Push). Taking advantage
of such confusions, the adversary can post his content to the vic-
tim’s apps in the name of trusted parties and intercept her private
messages. The study highlights the serious challenges in securing
push-messaging services and an urgent need for improving their
security qualities.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification–
Validation; D.2.5 [Software Engineering]: Testing and Debugging–
Code inspections and walk-throughs

General Terms
Security

Keywords
mobile push-messaging services; Android security; mobile cloud
security; security analysis
∗The names of the first two authors are in alphabetical order.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CCS’15, October 12-16, 2015, Denver, CO, USA
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813652.

1. INTRODUCTION
Push-messaging (aka., cloud-messaging) has emerged as a ma-

jor channel that connects software vendors to their mobile users,
which is now provided by all commercial clouds (Google, Ama-
zon, etc.), device manufacturers (Samsung, Apple, Microsoft, etc.),
and increasingly third-party providers (e.g., Urban Airship [12],
PushIO [9]). These services are further integrated by syndicators
across different platforms, allowing the vendor to push a message
to all devices associated with different push clouds such as Google
Cloud Messaging (GCM), Amazon Device Messaging (ADM) and
Apple Push Notification service (APNs) in one step. Through this
channel, popular apps (Facebook, Skype, Yelp, Netflix, etc.) re-
ceive sensitive information (private messages, bank account bal-
ances, etc.) and commands for security-critical operations (e.g.,
erasing data on lost devices) from their app servers. Therefore, its
security and privacy assurance is of critical importance.
Hazards in the cloud messenger. A recent study, however, casts
serious doubts on the security qualities of the channel [28]: re-
searchers preliminarily investigated GCM, ADM and two other ser-
vices through manual analysis, and revealed that they were all rid-
dled with security-critical loopholes. For example, a lapse in GCM
allowed an unauthorized party to hijack a victim’s registration ID
(an identifer for the app on her device) and receive all the messages
that should be pushed to the victim. On the device side, improper
use of PendingIntent was found to cause this secret token to
be exposed, allowing unauthorized parties to intercept the victim’s
messages and inject data to her app.

Even though all these flaws have since been fixed [28], the grip-
ping concern remains whether they are just a tip of the iceberg. Af-
ter all, over 40 providers and syndicators are already in this boom-
ing business and new players continue to join the party, whose ser-
vices have been integrated into millions of apps. Less clear here
is whether they also suffer from any existing or new threats never
known before. Most importantly, nothing is out there today to help
service providers and app vendors identify vulnerabilities in de-
velopment and integration of push-messaging services, and third
parties evaluate their security protection. As a result, the security
qualities of these services are hard to assure.
Detecting vulnerable messaging integrations. As the first step
toward better protecting push messaging, we developed in our re-
search the first technique to help detect security-critical vulnerabil-
ities in device-side integrations of these services. We focus on their
integrations within apps, as these components are most likely to be
the weakest link of this type of cloud services, as indicated by the
prior research [28]. Also, never before have the push-messaging in-
tegrations been thoroughly investigated. More specifically we first
identified a set of properties for a secure integration. Automatic

1260

verification of these properties, however, turns out to be challeng-
ing: given an app, little is known about the location of its code
segment related to a push-messaging service, its detailed function-
alities (registrations, receiving messages, etc.), the way messages
are passed from the service’s SDK to the app (e.g., through call-
back, static or dynamic receiver, etc.), the models of the cloud ser-
vice integrated (e.g., syndication, with or without a service app) and
the further operations the app performs on a received message. To
address this challenge, our new technique, called Seminal (secure
messaging integration analysis), utilizes the simple sample code
offered by each cloud-messaging service to automatically recover
such semantic information and guide the analysis on both the SDK
and the app’s processing of messages (Section 3). Seminal is de-
signed specifically for analyzing the push-messaging service, one
of the most important mobile-cloud service in use. Our evaluation
shows that the approach can effectively detect security weaknesses
within popular apps’ integrations in a large scale.
Our findings. Our implementation of Seminal was used in a study
to analyze the SDKs of 30 push-messaging services, covering most
third-party services we are aware of, and over 35,173 commercial
apps (e.g., Facebook, Yelp, etc.). Our findings are astonishing:
57% of the SDKs (17 out of 30) have at least one security-critical
flaw and 50.2% of the apps contain vulnerabilities that could be
exploited by an unauthorized party to either inject messages or in-
tercept sensitive user information. In addition to a better under-
standing about the scope and magnitude of known flaws, which
has never been studied at this scale, many new security flaws were
brought to light by our study, which are causing confusion within
existing push-messaging services and often fundamental to their
design. For example, we found that almost all the apps integrat-
ing multiple cloud-messaging services (e.g., GCM, ADM, etc.) do
not discriminate which service a received message actually comes
from: Facebook and Skype integrate both GCM and ADM services,
while on most (if not all) mobile devices only one of these services
is supported; therefore, a malicious app on the same device can
leverage the Intent receiver for the unused service to inject mes-
sages into these apps, in the name of a party the app user trusts
(e.g., her close friend) (Section 4.1). Another important observa-
tion is that all the cloud-messaging services can only identify the
device and the app, not the user supposed to receive a message.
As a result, over 50% of social, finance and health apps, including
the popular ones such as Yelp and Pinterest, were found to have a
user confusion problem, which potentially allows a malicious party
to impersonate a friend of the victim and push messages to her
through a different user account (Section 4.1).

In addition, our research reveals the pervasiveness of client iden-
tifier (CID) exposure, a serious threat since CID is an authentication
token and its disclosure enables the adversary to directly contact a
cloud server to obtain a user’s messages. The problem was found
in over 6.5% of the 17,557 apps sampled from 5 major Chinese app
markets. Furthermore, a new power-saving strategy of the Baidu
Push (an extremely popular Chinese push-messaging service) was
shown to allow a malicious app to intercept the messages delivered
to their recipients (Section 4.1). Altogether, we discovered 17,668
vulnerable apps and have reported the most critical issues to re-
lated parties. The importance of these new findings has been well
acknowledged by the industry: e.g., Facebook rewards us $2000
for the security flaws our approach detected in their app. A demo
of the attacks is posted on a private website [11]. We also report a
measurement study on these vulnerable apps (Section 4.2).
Contributions. The contributions of the paper are summarized as
follows:

• New technique for detecting vulnerable integrations. We came
up with the first methodology for a systematic analysis on push-
messaging integrations. A simple technique we built leverages
sample code as a guidance to efficiently detect potential security
problems within service SDKs and the apps integrating them. This
new approach can be utilized to identify security-critical vulnera-
bilities when developing new apps and the client components of a
new push-messaging service.
• New findings. Running our tool, we performed a comprehensive
study on the security properties of most third-party SDKs and over
35,173 apps. This study reveals the gravity of the situation: many
SDKs and a large portion of the apps contain security flaws never
known before, with serious consequences once exploited. This
points to an urgent need to improve the security qualities of push-
messaging integrations.

2. BACKGROUND
Push-messaging services. To receive messages from a push cloud,
an Android app is given a unique identifier, which we call regis-
tration ID for those associated with device manufacturers’ clouds
such as GCM and ADM, or client ID (CID) for the identifiers gen-
erated and used by other push-messaging services in a way similar
to a universally unique identifer (UUID). The identifier is known
to the application vendor’s app server and the push cloud’s con-
nection servers. To push a message to a user, the app server asks
the cloud to deliver it to the app with an identifier associated with
the user. This message delivery process ultimately goes through a
connection server that directly talks to the app or indirectly through
an Android service app (e.g., android.gms). To obtain such an
identifer, an app first needs to register with the service whenever a
new user logs in. This registration process involves communica-
tion with the cloud, which either causes the connection server to
generate a registration ID or sends a locally constructed CID (by
the service SDK integrated into the app) to the server. The identi-
fier is also submitted by the app to its app server (typically through
an out-of-the-band SSL connection between them) to bind it with a
user ID. Such an infrastructure and operations vary across different
services, including those provided by device manufacturers or the
third parties, and those integrating others’ services (Figure 1), as
explicated below:
• Manufacturer push-messaging service. Examples of the services
for Android devices in this category include GCM, ADM, Samsung
Push Service, Nokia Notification Service, etc. As illustrated in
Figure 1, they are provided by manufacturers’ clouds, whose con-
nection servers directly talk to the application vendor’s app server.
A prominent feature of such services on the device side is a ser-
vice app (e.g., Android service android.gms, the ADM client,
etc.) that relays the message received from the connection server to
the target app, using Android Inter-Process Communication (IPC).
Also through the service app, an app registers with the push-messag
ing service (sometimes through an SDK integrated within the app),
which involves authenticating the device to the connection server
and requesting the server to create a registration ID. Note that the
ID here is bound to the app vendor’s server: only this app server is
allowed to push messages to the app.
• Third-party services. In addition to device manufacturers, third
parties also start providing their own push-messaging services. For
example, Baidu Push [2], Getui [6] and JPush [7] are already serv-
ing hundreds of millions of users. Such services are similar to
their manufacturer counterparts, except that the connection server
directly talks to the service SDK within the app through a socket
connection. In this way, the SDK authenticates the app to the server

1261

Connection Servers
(GCM, ADM)

App Server

Third-Party Servers

App Server

Connection Servers
(GCM, ADM)

App Server Sydication Server

Mobile Devices
(Android, iPhone, Kindle)

Manufacturer Service Third-Party Service Syndication Service

Service App

IPC

Mobile Device

3. Messages 3. Messages
Target App

IPC

SDK

Target App

Mobile Device

Figure 1: Push Messaging Services

using its CID (which different from registration ID, also serves as
a secret token) before getting messages from the server.
• Push-messaging syndication. To support convenient message
pushing across different devices and platforms (Nexus, Samsung,
Kindle, etc.), syndication services (syndicator for short) like Urban
Airship [12], Push Woosh [8], etc. have emerged in recent years.
Such a service is framed over multiple manufacturer clouds, such
as GCM, ADM, using a syndication server that connects to the app
server the service provider sets up for each of those clouds. To use
the service, the app vendor runs her app server to push a message,
together with the recipient’s CID, to the syndication server, which
retrieves the registration ID associated with this CID for a specific
manufacturer cloud, and then forwards the message to the syndica-
tor’s app server there. After that, the connection server deliveries it
to the end user’s app.
Service integrations. To get a push-messaging service, the app de-
veloper often needs to integrate its SDK to her app. As discussed
above, the SDK functions as a messaging interface, interacting with
a connection server to receive messages from the app vendor, and
then handing them over to the app. It is also in charge of gen-
erating a CID for the app and sending it to the app server or the
syndication server during a registration. The communication be-
tween the SDK and cloud servers goes through socket, using the
CID as an authentication token in the case of third-party services
or service syndications, while its service to its hosting app is often
delivered through Android IPC or a callback function registered for
the messaging event (Section 3.2). Also, for the app integrating a
manufacturer push-messaging service, it also uses IPC to receive
messages from the service app (e.g., android.gms).

The IPC communication on Android mainly relies on the In-
tent mechanism. An Intent is a message that describes the oper-
ations to be performed by its recipient. The operations here in-
clude invoking a user interface (startActivity) or a service
(startService), or broadcasting to the receivers associated with
a specific action as specified by recipient apps. Such a receiver can
be private, so that only its hosting app is allowed to send messages
to it, or protected by permission to ensure that only an authorized
party (with a proper permission) can communicate with it. Oth-
erwise, the receiver is made public. Such settings typically show
up within an app’s manifest file but can also be programmatically
defined during the app’s runtime. A problem for this Intent mech-
anism is that the sender app’s identity is not given to the recipient.
When it becomes necessary for an app to find out where a message
comes from, a typical solution is using PendingIntent, a to-
ken that enables whoever receives it to perform a set of pre-defined
operations with the sender’s identity and permission. Examples
of such operations include startActivity, startService,
etc. To find out who sends an Intent, the recipient app can sim-
ply call getTargetPackage or getCreatorPackage with
the token to get the sender app’s package name from the operating

system. Prior research on four push-messaging services (GCM,
ADM, Urban Airship and a Chinese push cloud [28]) shows that
PendingIntent is often broadcasted and therefore can be inter-
cepted by a malicious app to invoke private functionalities within
the sender app. However, the study does not go beyond this on the
push client side. Little has been done to find out whether any other
security weaknesses, particularly those related to the design of push
messaging, exist on the mobile device, not to mention any effort to
systematically detect them. This is the focus of our research.
Adversary model. We consider a malicious app running on the
victim’s device. The malware does not have a system privilege but
requires a set of dangerous permissions, such as READ_PHONE_ST
ATE and INTERNET, to exploit push-messaging services the vic-
tim’s apps use. These permissions are extensively utilized by le-
gitimate apps and therefore claiming them is not considered to be
suspicious. Further, we assume that the adversary is capable of
setting up an app server with the push clouds serving the victim,
opening an account with her application vendor and also having a
mobile device for the attack purpose.

3. SEMINAL
Security properties and challenges in automatic checks. The
security goals of a push-messaging service can be described as fol-
lows: (1) a message for a user from an app server should only be
pushed to that user and no one else; (2) a user only gets her own
message (not others) from the authorized app server (not from an
unauthorized party). To this end, a set of properties are expected
from the client-side integration. Specifically, the app integrating
the service should communicate with the service app (in the case of
the manufacturer service) or the SDK (in the case of third-party or
syndicated service) through an authenticated secure channel. Fur-
ther it should check whether an incoming message belongs to the
current user (according to the User ID in the message). Note that
this verification can only happen within the app, as no other entities
in the service can differentiate two users sharing the same app on
the same device, which if not handled properly can lead to serious
security breaches (Section 4.1). Finally, the CID (the authentica-
tion token for the third-party or syndicated service) should always
be kept secret. These properties were identified from the way cur-
rent push-messaging services work, as elaborated in Appendix.

Automatic verification of these properties within real-world apps
is by no means trivial. Specifically, given an app, it is less clear
what service has been integrated there, manufacturer-based, third
party, syndication or sometimes even a combination of multiple
services. Further, we need to identify the interface between the app
and the service SDK within the app’s APK automatically to under-
stand whether an incoming message has been sent by the SDK and
received by the app in a secure way. New techniques need to be
developed to carve out a small set of integration-related code from
an app for an automatic, efficient property checking. Following we

1262

elaborate the design and implementation of Seminal that addresses
these challenges.

3.1 Overview

Clue
Finder

SDK
Inspector

Integration
Scanner

Sample Code
Manifest File

Mobile AppSDK

Database

Service Fingerprint
App-SDK interface

IPC Infomation

SDK
Vulnerabilities

Application
Vulnerabilities

Seminal

Stage 1 Stage 2 Stage 3

Figure 2: Seminal Design and Architecture

At a high level, Seminal performs a progressive three-stage anal-
ysis on the integration of a push-messaging service, with each stage
handling increasingly complicated code and providing supports for
the next stage, as illustrated in Figure 2. At the first stage, only a
few hundred lines of sample code are inspected, together with its
manifest file. The purpose here is to collect a set of information for
the next-stage analysis on the service’s SDK. Most important here
is an interface for an app integrating the service to interact with the
SDK (e.g., receiving a push message from the SDK). Such an inter-
face is a program component within the app, called anchor, which
could be a broadcast receiver, service or a callback function. Other
information gathered at this stage is a fingerprint for uniquely iden-
tifying the service (e.g., an action name for a specific third-party
service).

The follow-up step uses the anchor to inspect the way that mes-
saging related communication is authenticated within the SDK and
the protection of the CID. After all mainstream services go through
these two stages, what have been found are kept in a database, with
each service’s information indexed by their fingerprints. Then, at
the third stage, Seminal scans a large number of apps, automati-
cally identifying the services they incorporate according to the fin-
gerprints, and utilizing their anchors to guide the analysis of their
interactions with the SDKs and the security checks that happen to
User IDs within their integrations.
Architecture. The architecture of Seminal is described in Figure 2.
Our design includes a clue finder, an SDK inspector and an integra-
tion scanner. The clue finder automatically examines the sample
code and its manifest file, collecting information for the follow-up
analysis. Using the information, the SDK inspector further checks
the SDK for security properties (authentication and CID protec-
tion). The results are then stored in the database and used by the
integration scanner to detect security weaknesses within apps.
Example. Figure 3 presents a simplified version of the sample code
for PushIO [9], a popular syndication service. Given the code, the
clue finder first inspects its manifest file. Under the definition of
the receiver PushIOBroadcastReceiver, the standard GCM
action c2dm.intent.RECEIVE, together with a different re-
ceiver specified in the code, indicates that the service is a syndicator
over GCM, and the service name PushIOGCMIntentService
is identified as a fingerprint for the service (Section 3.2). Then,
through a quick analysis of the code, the clue finder discovers that
the PushIO SDK talks to its hosting app through a dynamic receiver
mBroadcastReceiver, which serves as an interface between
the hosting app and the SDK (i.e., the anchor). Based upon such
information, the SDK inspector checks the IPCs within the SDK,
between PushIOGCMIntentService and that for interacting

Manifest File Snippets:
<receiver android:name="com.pushio.manager.PushIOBroadcastReceiver"

android:permission="com.google.android.c2dm.permission.SEND">
<intent-filter>

<action android:name="com.google.android.c2dm.intent.RECEIVE" />
<action android:name="com.google.android.c2dm.intent.REGISTRATION" />
<category android:name="com.pushio.basic" />

</intent-filter>
</receiver>
...
<service android:name="com.pushio.manager.PushIOGCMIntentService" />

Sample Code Snippets:
public class PushSettings extends Activity {
 private BroadcastReceiver mBroadcastReceiver;

 @Override
 public void onResume() {
 super.onResume();
 mBroadcastReceiver = new BroadcastReceiver() {

 @Override
 public void onReceive(Context context, Intent intent) { }
 registerReceiver(mBroadcastReceiver,
 new IntentFilter("com.pushio.basic.PUSHIOPUSH")); }}
}

Figure 3: Simplified Sample Code and Manifest File

Inputs Manifest File, Sample Code, Manufacturer Actions
Service Type Syndication: service (not in sample code)+manufacturer action

Third-party: otherwise
Fingerprint Service name that is defined in SDK (not in sample code)
Anchor Check sample code for: BroadcastReceiver,

registerReceiver, Serivce (onHandleIntent)
or Callback function

Table 1: Clue Finder Logic

with the anchor, to detect any improper setting of the communica-
tion (Section 3.2). Also, since the service involves a CID, its gener-
ation and use are then evaluated to detect leaks. All the information
collected here is further used to analyze an app integrating such a
service, which is identified with the fingerprint. More specifically,
from onReceive of the anchor, the scanner runs an integration-
specific approach to find out whether User ID has been checked in
the app (Section 3.3). It also inspects the app’s code and manifest to
ensure that all the receivers are configured properly. Any problem
discovered during this process is reported as an integration flaw.
Implementation. We implemented Seminal over FlowDroid, a
static analysis tool [14]. Our current implementation is largely au-
tomatic, capable of analyzing tens of thousands of commercial apps
(Section 4.2). However, it still contains some manual steps, includ-
ing collection of the inputs to the system (sample code, SDKs and
apps), label of the CID within an SDK (Section 3.2) and validation
of the results reported by Seminal (Section 3.2). How to further
automate these steps is left for the future research.

3.2 Clue Finding and SDK Analysis
Clue finding. Seminal is designed to inspect the service’s sam-
ple code, finding “clues” for its operations. Almost every push-
messaging service provides a set of sample code (aka., demo code),
typically a few hundred lines with a manifest file, to demonstrate
the way the service should be used within an app (e.g., the example
in Figure 3). The specific clues we are looking for include the ser-
vice type and fingerprint, and the anchor of its integration within
an app. Such semantic information can be recovered in a fully au-
tomatic way, as summarized in Table 1.

Specifically, the clue finder maintains a list of action names that
uniquely characterize the small set of manufacturer services (GCM,
ADM, Samsung and Nokia), e.g., c2dm.intent.RECEIVE. For
the sample code from other service providers (third party or syndi-
cation), it is fingerprinted by the service name defined in its mani-
fest files but does not show up in the sample code, e.g., PushIOGC
MIntentService in Figure 3. Such a service component is in-

1263

cluded in the SDK and therefore cannot be changed by the app
developer. The type of the push-messaging service is also deter-
mined from the manifest: if it specifies a manufacturer’s action and
a service component (not in the code), then sample code is for a
syndicator; otherwise, it belongs to a third-party service. This is
because a manufacturer service, like GCM and ADM, does not de-
fine any service component in the manifest of its sample code, and
instead directly runs a separate service app to deliver messages.

Finding anchors and the way an app gets messages is equally
straightforward. An anchor gets messages from the SDK through
one of the following channels: Intent broadcast, service or call-
back. To determine which channel has been used, our approach
automatically generates an abstract syntax tree (AST) to search
for a receiver object within the sample code. At most one such
object is there for handling the message pushed from the SDK
or the service app. It can be easily identified from the declara-
tion of a class extending BroadcastReceiver, together with
a specification of its onReceive method. Also, the presence of
registerReceiver indicates that the receiver is dynamically
generated during an app’s runtime. If such elements (Broadcast
Receiver, onReceive) are missing in the code, the clue finder
then searches for the method for the service component (onHandl
eIntent) defined there. If they are also missing, the chance
is that the push-messaging service is integrated through a user-
defined callback function invoked by the SDK. The function is dis-
covered when the name of a newly created object or a class name
(AtomPushNotifyCallback in Figure 4) also becomes a pa-
rameter of a function (setAtomPushNotifyCallback), as il-
lustrated in Figure 4. Once the IPC receiver, service or callback is
found, it is automatically labeled as the anchor of the integration.

AtomPush.setAtomPushNotifyCallback(new AtomPushNotifyCallback() {
 @Override
 public void OnPushNotifyArrive(String messagetTitle, String messageContent, String
 subContent, HashMap<String, String> params) {...}});

Figure 4: Simplified User-defined Callback Function

A problem here is that the name of the anchor could be changed
by the app developer. Identifying it across different apps relies on
some invariants that characterize the anchor. For the IPC, the action
it uses for Intent filtering is such an invariant, which is either a con-
stant string (e.g., cn.jpush.android.intent.MESSAGE_R
ECEIVED) or constructed through concatenating the app’s package
name with a string, a convention for defining an action that gets in-
puts from the SDK. The constant string here serves to identify the
action and then the anchor. In the absence of such an action, the
class the anchor extends is used as the invariant. For a callback
function, the name of the API for delivering the handler back to the
SDK is used to find out the anchors employed by different app de-
velopers (e.g., AtomPush.setAtomPushNotifyCallback
in the example). After such inspections are done, all the findings
are saved to a record in a database, which can be located by the
fingerprint of the service.
Authentication in SDK. Based upon the clues gathered, Seminal
continues to check the security properties within the SDK, particu-
larly the authentication on the IPC communication from where the
message gets in (from the service app) to where it is handed over to
the app (i.e., the anchor). Authentication here relies on Android’s
security settings: the receiver should be either private or protected
by permission, and all the IPC calls should target a specific pack-
age. Although verification of such settings has also been done in
the prior research [15], Seminal is designed to check the calls re-
lated to push messaging, according to how the SDK works.

Specifically, our SDK analyzer (implemented in our research us-
ing Soot [10]) looks at the anchor and then goes backward along
the execution path through which a message is transmitted from
the entry point of the SDK to its exit (to the app), checking the
setting of each IPC (e.g., startService) and its handler (e.g.
onReceive) one by one. The analyzer first finds the IPC call
ipc within the SDK that sends an Intent to the anchor. The re-
lation between the call and its handler is established using class
or action name, whose constant part can be directly found within
ipc or through a simple tracing of the define-use chain using Soot.
Then, the analyzer locates ipc on the control-flow graph (CFG) of
a handler, which corresponds to another IPC ipc′. This indicates
that ipc′ happens within the SDK before ipc is later made to the
anchor. After that, the analyzer further goes through all the IPC
calls on the SDK’s AST to find out ipc′, using the action of the
handler or its class name, which also shows up in the calls like
startService1. This backtracking process continues until the
current handler is found to use the standard manufacturer action
such as c2dm.intent.RECEIVE, indicating that it is the en-
try point for the SDK (that receiving messages from a system ser-
vice app like gms), or the IPC call discovered from the AST can-
not be located within any handler’s CFG, which only happens in a
third-party SDK, where messages directly come from the connec-
tion server through a socket connection.

All the IPCs found in this way are then inspected for their se-
curity settings, as discussed above. Particularly, when a receiver is
found to be protected by a permission, we further find out which
party is given the permission: it is supposed to be either a sys-
tem app or the hosting app2. Also Seminal checks whether there
is any attempt to broadcast PendingIntent, and if so, whether
any part of its content is left blank (so the adversary can fill in his
operation [28]). An alarm is raised when such a problem is found.
CID secrecy. As mentioned earlier, the CID is an authentication to-
ken for a third-party or syndication service and it secrecy is there-
fore of critical importance. Since the token is generated by the
SDK and only used there, our SDK analyzer is also tasked to check
whether it is well protected. Specifically, the function that creates
the CID is always highlighted in the instructions for integrating the
service as the first thing the app developer needs to know. What
we did in our research is to label this function within the SDK
and let our analyzer take care of the rest. The analyzer starts from
the output of the function, which is the newly created CID, to per-
form a backward slicing, following the define-use chain generated
by Soot, until this analysis ends at a set of APIs, like getIMEI
and Random. Android does provide an API, uuid, for creating
a secret token. The function returns an 128-bit string. However,
as discovered in our research, many SDKs just uses a set of pub-
lic information (e.g., DeviceID) collected by the APIs such as
getDeviceId, to produce the CID (Section 4.1). In this case,
the token is no longer a secret. Our analyzer just inspects all the
APIs it observes: if all of them can be invoked by other apps (with
a proper permission) to get the same resource and produce the same
result, it concludes that the CID generation is not secure.

Further, the SDK analyzer goes through the AST to identify all
the occurrences of the CID. From each occurrence, our approach
performs a taint analysis using FlowDroid to find out whether the
content of the CID shows up at any IPC call. Once found, the call

1Linking an IPC to its handler has been extensively studied [30].
Our approach is a simple version of these techniques, which is tai-
lored to how push-messaging SDKs work.
2This is done manually in our current implementation.

1264

is inspected: if its Intent is broadcasted to an action, our system
reports that a leak has been found.

3.3 Integration-Specific App Checking
Based upon what it collected from sample code and SDKs, Sem-

inal is ready for scanning apps for integration flaws. Here we
elaborate its unique design for a high-performance analysis, which
avoids going through the whole app, and just focuses on its integra-
tion part.
Receiver checking. The first thing that needs to be done on the
app side is to make sure that its anchor has been securely config-
ured. Here the anchor we are concerned about is a static or dynamic
receiver, as the callback channel cannot be accessed by the adver-
sary outside the app’s process. Specifically, given an app whose
push-messaging service is identified by its fingerprint, the integra-
tion scanner first locates its anchor based upon the action claimed
by the receiver (recorded in the database). For the static receiver,
an inspection of the app’s manifest file reveals its protection level.
As to the dynamic receiver, which cannot be configured as private,
the scanner checks whether a permission is in place to authorize the
sender, and whether it is only given to legitimate apps.

if (localVineSingleNotification.recipientUserId != this.mAppController.getActiveId())
 SLog.e("This message is intended for someone else {}.",
 Long.valueOf(localVineSingleNotification.recipientUserId));

Figure 5: User ID Verification Example
User ID filtering. To determine whether an app has properly veri-
fied an inbound message’s user ID, the integration scanner performs
a taint analysis, starting from the anchor (the taint source), to track
how the content of the Intent (the message) is handled by the app.
Such content processing is rather straightforward within an app,
typically involving a format check, sometimes a classification (e.g.,
determining whether the message is an advertisement or a private
one), then issue of a notification and post of the message’s content.
The security check on User ID is detected from such operations on
“tainted” data (that is, the content propagated from the source), us-
ing a behavior signature. Specifically, we look at a set of compar-
isons of equality observed early in the processing of the message,
between a tainted string or long integer (that is, the user-related in-
formation from the message) and a variable holding nonconstant
value stored in the app (the ID of the current user), as illustrated by
the example in Figure 5. The idea here is based on the observation
that such a comparison is distinctive during the processing of an
incoming message, because in the case of the format checking and
classification, equality comparisons always happen between some
message fields and a set of constants such as action and message
types (e.g., com.google.android.c2dm.intent.RECEI
VE). In the example, receipientUserId is a string from the
taint source (the Intent) and is found to be compared with the out-
put of getActiveId. Through a simple define-use analysis, the
scanner finds that the latter returns the content of a variable stored
in an object. This indicates that a user-ID checking happens. In-
deed, our evaluation (Section 3.4) shows that the behavior signature
is accurate.

Making such a security analysis work on a large number of apps,
however, turns out to be challenging. Although many existing tools
[14, 26, 27] already support a taint analysis on Android, all of them
are designed to analyze the whole program, which is complicated
and slow. The problem comes from the difficulty in building an
app’s whole CFG across IPCs: the construction of the CFG from
an entry point has to stop at an IPC call and waits for an analysis

on the call’s parameters to determine which handler within the pro-
gram will be invoked next. Running this on a complicated app is
time consuming and also unnecessary, since all we need is just a
quick analysis on a small portion of the code related to the push-
messaging integration. Here we describe an integration-specific
technique to improve the performance of the analysis.

BroadcastReceiver A

IntentService A BroadcastReceiver B

IntentService CIntentService B IntentService D

startService

startService startService
startService

sendBroadcast

Layer 1:

Layer 2:

Layer 3:

Receiver A (Anchor)

Service A

Receiver B

Service B

Service C

Service D

Layer 1:

Layer 2:

Layer 3:

startService

sendBroadcast

startService

startService

startService

If(msg.UserId != Utils.getUserId()) { }

If(msg.UserId != this.mAppController.getUserId()) { }

Figure 6: Example of Breadth-first and Layered Analysis

Specifically, our integration scanner performs a breadth-first, lay-
ered analysis. Starting from the anchor, it first builds up a partial
CFG of the app, whose paths all end at the sites of IPC calls, as
illustrated in Figure 6. Over this partial CFG, which is considered
to be the first “layer” of the analysis, we run a taint check, using
the function provided by FlowDroid [14]. For all the equality com-
parisons discovered in this way, our scanner evaluates whether any
of them is a security check on user ID, as described above. If none
of them matches the behavior signature, we select a set of paths
on the partial CFG to extend to the next layer, that is, propagat-
ing the taint to their IPC handlers. These paths are selected when
their end points, i.e, the IPC calls, are either startService
or sendBroadcast (or sendOrderedBroadcast), as other
IPC calls like startActivity are unrelated to the message pro-
cessing. Also, these calls should have their Intents tainted, indi-
cating that their handlers work on the message. The corresponding
handlers are discovered using the names of the actions or classes
specified in the calls.

Over the extension of the CFG on the next layer, our scanner
continues to propagate the taint and evaluate the tainted equality
comparisons against the signature. If none has been found, we do
this again and extend the partial CFG to the third layer. In the case
that the security check is not present even on this layer, the app is
reported to fail to check User ID. This is because the User ID of the
message needs to be evaluated early in the processing: if this has
not been done by the onReceive of the anchor (the first layer) as
soon as the message comes in, it must happen right after the format
checking and classification either within the onReceive or in a
service the anchor invokes (the second layer); therefore a three-
layer analysis is sufficient for determining whether such a check
indeed exists. In this way, our scanner only needs to go through
a small portion of app code, allowing it to run much faster than a
direct use of existing tools.

3.4 Evaluation
We implemented Seminal on top of FlowDroid [14], and ran it on

the integrations of 30 push-messaging services within 35,173 apps
downloaded from 6 markets. We discovered 17 security-critical
flaws within 30 SDKs, and 26,069 potential problems in 17,668
apps, including high-profile ones such as Facebook, Skype, Yelp,
etc. The detailed findings are elaborated in Section 4. Here we
report how our system performed.
Effectiveness. In the experiments, our implementation accurately
evaluated all the sample code and related manifests. When it comes
to the 30 SDKs, the prototype reported that 14 of them contain inse-

1265

cure broadcast channels (unprotected receiver or broadcast without
target package) along the execution paths for message delivery, and
the rest 16 do not have such a problem. We manually verified these
findings, which were all confirmed to be correct.

For the CID, we found that 10 out of 30 SDKs do not generate the
secret identifier at all. Instead, some of them only use tag to label
a group of users for broadcasting messages to them, and the others
ask the developer or the user to come up with an alias (e.g., email
address) for identifying the app, which itself has security risks (Sec-
tion 4). Among the rest 20 SDKs, our prototype successfully went
through 15 of them. The rest 5 could not be analyzed because their
code related to CID generation and processing has been obfuscated
or contains extremely complicated data structures. Note that this
does not undermine the utility of Seminal, as the developer who
wants to use it for vulnerability detection will not deliberately ob-
fuscate her code. Among those our prototype can handle, 7 were
found to build their CID either using Android’s UUID generator
or with the input from the connection server, which are likely to
be secure. Also, Appsfire was found to directly use the GCM reg-
istration ID. The remaining 7 turned out to be problematic: 5 of
them either solely rely on public resources (e.g., android_id)
for constructing the secret token or inadvertently expose it to unau-
thorized parties; the remaining 2 was found to build their CID par-
tially from public resources but our prototype could not determine
whether non-public data are also involved, due to the complexity
of their program structures. We elaborate these problems in Sec-
tion 4.1. Such findings were validated through manual inspections.

Using the database generated at the first two stages, our sys-
tem scanned over 35,173 apps integrating push-messaging services,
17,616 from Google Play Store and the rest from third-party mar-
kets. Among the apps reported by Seminal as vulnerable, we found
that all the findings are accurate in the cases of insecure IPC re-
ceivers, PendingIntent and other authentication issues. How-
ever, for User-ID checks, a small set of cases turned out to be false
positives: that is, the apps actually performed User-ID filtering
while our implementation failed to identify the presence of such an
operation. Specifically, we inspected 12 most popular apps in the
social category that were found to have the User-ID problem, man-
ually evaluating their code and also performing a dynamic analy-
sis to validate the presence of the vulnerability. 10 of them were
confirmed to have the security flaw and 2 were false positives. A
close look at these false positive cases reveals that one of them was
actually caused by the taint analysis mechanism provided by Flow-
Droid, which missed the equality check present in the code. It is
important to point out that these apps are among the most com-
plicated ones we analyzed and the real false detection rate is much
lower: in another validation attempt, we randomly sampled 20 apps
across all categories and only found one false positive, which was
caused by FlowDroid [17, 27].
Performance. Our implementation of Seminal was found to be
efficient. For the SDK it can handle (particularly the one with-
out deep obfuscation), the prototype always completed the analysis
within 10 minutes. When it comes to the security analysis that hap-
pened on apps, which includes User-ID filtering, protection of an-
chor receivers and exposure of PendingIntent, on average 108
seconds were spent on each app. It is important to note that such
a performance is achieved by our unique design that automatically
identifies and analyzes only part of app code related to service in-
tegration.

4. NEW ATTACKS AND MEASUREMENT
In this section, we report our findings, focusing on new security

flaws and interesting observations.

SDK and app collection. As mentioned earlier, the services we
studied include popular syndication services and third-party ser-
vices whose SDKs were publicly available. All the syndication
services here are provided in North America, while all the third-
party services are from China, where major manufacturer services
such as GCM are not accessible. Also there are tens of services
we were not able to study, due to the difficulty in obtaining their
SDKs, which requires application and approval, e.g., IBM Xtify.
Some new services have not yet publicly released their SDKs (e.g.,
Mono Push). This demonstrates that the market of push messag-
ing is highly vibrant and therefore developing effective means to
ensure security qualities of the services is imperative.

Our implementation also fingerprinted popular manufacturer ser-
vices, including GCM, ADM and Nokia. Those services mainly
rely on their client-side service apps such as android.gms to
deliver messages. In addition, GCM and ADM were manually an-
alyzed by the prior work [28]. Therefore in our research, we just
focused on these services’ integrations on the app side.

Market No. Of Apps

Google Play 17,616
Baidu 2,315
Gfan 3,734

Appchina 4,572
Mumayi 3,612
Xiaomi 3,324

Overall 35,173

Table 2: Sources of Analyzed Apps

17,616 of the 35,173 apps used in our study come from Google
Play, which include those integrating push-messaging services and
also highly ranked in each category (social, health, finance, etc.),
and the rest from 5 popular app markets in China, which use third-
party services. Table 2 summarizes the sources of these apps. Am-
ong them are highly popular ones such as Facebook, Skype, Yelp,
Pinterest, etc., with 1682 having over 1 million downloads.

4.1 New Attacks
The new problems discovered mainly come from the confusion

caused by vulnerable service integrations: an app can be confused
by where the message it receives comes from when it integrates
multiple services, by who it is supposed to deliver the message to
and by which service app it should talk to. Also, the CIDs used by
syndicators or third-party services are often not kept secret.
Service confusion. Seminal is designed to check whether an SDK
and its hosting app properly authenticate the senders of the Intents
they receive (Section 3.2). When the receivers of these IPCs are
found to be protected by permissions, it becomes important to know
that such permissions are only given to the right party, which is al-
most always either the hosting app itself or a system app. There-
fore, whenever our implementation scans an app or an SDK, it al-
ways reports the presence of the permissions, asking for the con-
firmation that they are indeed defined and claimed by authorized
parties. In our study, our implementation discovered that 51 popu-
lar apps, most with over 1 million downloads, and 2 SDKs (Urban
Airship and PushIO) integrate multiple push-messaging services,
including GCM, ADM and Nokia. The outputs of the analysis are a
set of permissions (e.g., com.google.android.c2dm.permi
ssion.SEND for GCM, com.amazon.device.messaging
.permission.SEND for ADM, com.nokia.pushnotifica
tions.permission.SEND for Nokia), which are all required
to be given to system apps only.

1266

The problem, however, is that this condition cannot be satis-
fied in practice. Most of Android devices only support one of
such services: that is, only one service app (android.gms on
Nexus or com.amazon.device.messaging on Kindle) ex-
ists on a given device, defining only one of such permissions. As
a result, the other permissions are up for grabs by any parties:
any app can define such a permission within its manifest to gain
the capability to send messages to the target app’s receiver it pro-
tects. For example, on Kindle Fire, a malicious app can define
com.google.android.c2dm.permission.SEND, the per-
mission for the GCM service android.gms, which is not run-
ning on the device; as a result, the adversary becomes able to send
any messages to the apps integrating both the ADM and the GCM
services, either directly or through an SDK.

In our study, we found that 51 popular apps have this problem.
Particularly, on Kindle Fire, we built end-to-end attacks in which
an attack app successfully impersonated authorized parties (e.g.,
close friends of the victim user) to inject messages to the victim’s
Facebook and Skype apps. On the Nexus device, the same trick
can also be played: the attack app can define the ADM permission
com.amazon.device.messaging.permission.SEND to
send messages to the apps. However, the attacks can only cause a
denial of service, crashing both apps. A close look at the problem
reveals that when processing the messages, the integrations within
both apps ask for some ADM objects not present on Nexus, which
leads to the crash3. However, we found that when the attack app de-
fined the Nokia permission, com.nokia.pushnotification
s.permission.SEND, on Nexus, whose service has also been
integrated into the Facebook app and Skype, it successfully injected
messages and made the apps display them to the user in her friend’s
name (demo [11]). All together, our scanner reported 382 apps hav-
ing this vulnerability, including the 51 with over 1 million down-
loads.

Even more serious here is that both Facebook and Skype, and
most likely many other apps with the same problem are also subject
to a message stealing attack. Specifically, we found that on Kindle
Fire, a malicious app defining the GCM permission can imperson-
ate a non-existing GCM service app to inject a GCM registration
ID, which has been bound to an attack device, into the Facebook
or Skype app. As a result, the apps will be cheated into believing
that they are actually using the GCM service (instead of ADM),
and accordingly send the registration ID to their GCM app servers4

to bind the current user to that ID. The consequence is that from
that point on, only their GCM app servers can push messages to
these apps and the messages actually all go to the attack device, be-
cause the registration ID here is tied to the device. In our research,
we successfully launched the attack on Kindle Fire, and received
push notifications from both Facebook and Skype, including such
sensitive information as Skype’s private messages. The same se-
curity risk is also present on Nexus phones, when a malicious app
impersonates the Nokia service app.

The same problem (service confusion) also happens to the SDKs
of popular syndication services, including Urban Airship [12], which
recently incorporates both GCM and ADM. Particularly, we found
that PushIO only maintains one registration ID, no matter whether
it comes from GCM or ADM. As a result, a malicious app can
replace the target app’s GCM ID using the ADM permission on
Nexus, by sending the new ID to the target’s ADM receiver (within
the SDK). The same attack also succeeded on Kindle Fire, by re-
placing an app’s ADM ID through its GCM receiver. Note that this
3Kindle Fire actually includes the Android objects GCM needs.
4Actually, for those big organizations, they typically have their own
syndication services that connect to both GCM and ADM.

is slightly different from our attacks on Facebook and Skype, in
which the adversary stealthily binds the apps from the ADM ser-
vice to GCM. Here what we can do is directly replacing the SDK’s
GCM registration ID through the ADM channel. This vulnerabil-
ity was acknowledged by related organizations as a serious security
flaw. Facebook rewarded us $2000 for helping them fix the prob-
lem.
User confusion. When scanning all 35,173 apps, we deliberately
selected those involving user-related sensitive information to find
out whether they properly check the User ID of an incoming mes-
sage. This was done by focusing on the apps from the categories
such as social, finance, health, etc., and inspecting their user inter-
faces for the keyword “password”, which almost always indicates
the presence of users’ login credentials. Our analysis identified that
popular apps like Yelp, Pinterest, etc., did not perform any user-ID
based access control.

To understand the security consequences of this user confusion
problem, we built end-to-end attacks to exploit high-profile popular
apps. The idea is to associate the target app to a different user, the
adversary, so that he can push messages to the victim through his
own account on the target’s app server (e.g., the Pinterest server).
Such an association can be established when the adversary gets his
hands on the target app’s registration ID or CID. It is important to
note that in the absence of the user-ID vulnerability, knowing the
registration ID does not enable the adversary to do anything harm-
ful: he cannot get access to the legitimate user’s messages, as the
registration ID is not an authentication token and also bound to the
target app; nor can he inject any messages to the app because of its
check on user IDs, which filters out the messages from a different
user (the adversary in this case). For CID, its leakage indeed al-
lows the adversary to access the victim’s messages. However, he
still cannot inject messages to the target app when it verifies user
ID.

In our research, we exploited the security flaw within Pinterest, a
popular social app. What we did is to leverage a known vulnerabil-
ity in the browser and webview’s origin-based protection to acquire
the GCM registration ID within the app [4]. The vulnerability here
was found still pervasive among the devices with Android 4.3 and
below, which are running on about 69.8% of Android devices [1].
Specifically, whenever the Pinterest app visits a malicious web site,
the adversary can open an iframe within its webview instance to up-
load the app’s com.google.android.gcm.xml, which con-
tains the registration ID. The content within the iframe can be ac-
quired by the script injected, due to a weakness in webview’s in-
put sanitization mechanism [4]. In this way, the adversary can get
the registration ID from the app and further send it to the Pinterest
server to bind the ID to the attacker’s account there. Such an at-
tack was confirmed in our research, allowing us to push messages
to our own accounts but make them delivered to the target app (the
victim’s Pinterest app). We also built a similar attack on the Yelp
app, using another known vulnerability CVE-2012-6636 [3] to get
the victim’s registration ID before exploiting Yelp’s lack of user-ID
verification to push fake messages to the victim. In addition, for
all the apps integrating the SDKs that leak out CIDs, such as Push
Woosh, the attacker can easily bind their CIDs to his account so as
to push messages to the victim. This threat was also found to be
practical in our study.

Apparently, a solution to this problem is a security check on the
app server side to make sure that no two users share the same regis-
tration ID or CID. Indeed, we observed that some app servers, such
as Ask.fm, Lovoo.com detach the registration ID from one user
and binds it to another whenever the former logs out from their
apps and the latter logs in. However, this treatment cannot stop

1267

the user confusion attack: knowing the victim’s registration ID, the
adversary can simply log into the target app on his device to make
the app server bind the ID to his user account. When a message
is pushed to the ID, however, the victim will still be the recipient
because GCM ties the ID to her device. In this way, the adversary
still can inject messages to the victim’s app, in the name of the vic-
tim’s friend. Fundamentally, the problem is caused by the fact that
the push-messaging cloud can only identify the app on a specific
device, not the user of the app. Therefore, as long as an integration
fails to check user IDs, the user will always be under the risk of
receiving messages from an untrusted party.
Client confusion. Also our prototype reported that 11,841 apps we
scanned have insecure broadcast channels (unprotected receiver or
broadcast without target package). For example, most of the re-
ceivers for getting the messages from the service SDKs are com-
pletely unprotected and therefore any apps running on the same
device can directly inject messages into these vulnerable apps. Al-
though in the most cases, the problem is apparently caused by
implementation errors, there are situations when the security im-
plication is more fundamental. A prominent example here is the
SDK provided by Baidu Cloud Push, one of the most popular push-
messaging services in China with hundreds of millions of users [2].
Our analysis on their vulnerable receivers (detected by Seminal) re-
veals the security issues in their designs.

Connection Servers

App A

App B
Shared Service

Started by App A

App C

Mobile Device

Figure 7: Push-Messaging with Shared Service

It turns out that some services (e.g. Baidu) adopt a strategy to
support multiple hosting apps running on the same device, appar-
ently for the purpose of power saving. Specifically, in the presence
of these apps, one of them will launch a process to serve all of
them: the process directly communicates with the connection ser-
vice in the cloud to acquire messages for all these apps, and then
pushes the messages to their recipient apps’ receivers (based on
their package names). Figure 7 shows how this mechanism works.
Since these apps can come from any parties, as long as they in-
tegrate the SDKs of the services, the permission-based protection
is no longer applicable here, as it is hard to determine which app
should get the permission and which should not.

The consequence of the problem is that in addition to the mes-
sage injection threat, all these services may be subject to a man-in-
the-middle (MitM) attack. There is nothing to prevent a malicious
app from claiming that it also integrates the services, and therefore
becoming entitled to launch the service process. The process is
trusted to relay the messages for other apps pushed from the cloud,
and therefore is well positioned to collect the app users’ messages
and even modify their content. Further, some of these services uti-
lize a volunteer mechanism to coordinate their customers’ apps:
each app can set its own priority, and the one with the highest value
is supposed to create the service process while the others are asked
to terminate their processes to save battery power. This design en-
ables a malicious app to become the MitM whenever it wants. In
our research, we built an end-to-end attacks on Baidu Cloud Push

and successfully intercepted legitimate apps’ messages, which in-
dicates that the problem is indeed serious.
CID exposure. Our Seminal scanner also discovered the pervasive-
ness of CID exposure: among all 22 services designed to push mes-
sages to individual users through CIDs, 7 turned out to either create
the identifiers using publicly available resources (also accessible to
malicious apps) or expose their content to the unauthorized par-
ties. As an example, we found that high-profile services like Push
Woosh actually utilize deviceID and android_id to build their CIDs.
Such information can be acquired by a malicious app on the vic-
tim’s devices using the permissions like READ_PHONE_STATE.
With such information, we were able to generate the same CIDs
for apps using such services on an attack device. Since the CIDs
serve as authentication tokens between the devices and the connec-
tion server, we successfully utilized them to obtain the target apps’
messages on the attack device.

Of particular interest here is the syndication service PushIO, wh-
ich generates its CID using the Android uuid API, a rather se-
cure approach. This CID is supposed to be bound to the GCM (or
ADM or other manufacturer cloud’s) registration ID for the app
integrating the service to enable a message push through the iden-
tifer, regardless what manufacturer service the app is using. When
the GCM registration process (for getting the registration ID) fails,
which happens from time to time, the app needs to try it again. This
retry operation is initiated by the SDK through sending an Intent to
its hosting app. The way to do this, however, is through a broad-
cast, with the CID included in the Intent for the recipient to find
out whether it is the right party to act, in the case that multiple apps
using this service are present on the same device. The problem here
is that a malicious app can register the same action the legitimate
app’s receiver uses to get the CID within the Intent.
Other security risks. As discussed before, 10 out of the 30 SDKs
we studied do not use CID or registration IDs. Most of them ap-
parently are designed to push messages to a group of users, instead
of a single individual. However, some services (e.g. YunBa) also
provide an alias mechanism for locating a specific app. The alias
here is an identifier created by the developer or the user, just like
a user ID and password. The problem is that the documentations
of these services suggest to use public information like one’s email
address for this purpose. As a result, the adversary can easily figure
out the alias and use it to access the messages for the target apps.

4.2 Measurement and Discoveries

Risk Analyzed Apps Vulnerable Apps

Service Confusion 17,616 382(2.17%)
User Confusion 3086(8 sensitive categories) 2,234(72.39%)
PendingIntent 17,616 2,101(11.93%)

Overall 17,616 4,368(24.80%)

Table 5: GooglePlay App Risks

Risk Analyzed Apps Vulnerable Apps

Insecure Broadcast Channel 17,557 11,841(67.44%)
User Confusion 17,557 5,436(30.96%)
PendingIntent 17,557 4,075(23.21%)

Overall 17,557 13,300(75.75%)

Table 6: Chinese Markets App Risks
Landscape. From all 35,173 apps integrating push-messaging ser-
vices, Seminal found that 17,668 of them, more than 50%, have dif-
ferent security weaknesses. Table 5 and Table 6 provide the break-
downs of the findings. For all the apps from the Chinese markets

1268

Downloads Service Confusion User Confusion PendingIntent Overall

1-100 70/837(8.36%) 162/196(82.65%) 64/837(7.65%) 279/837(33.33%)
100-10K 159/6864(2.32%) 1132/1453(77.91%) 707/6864(10.30%) 1843/6864(26.85%)
10K-1M 102/8233(1.24%) 811/1143(70.95%) 1085/8233(13.18%) 1849/8233(22.46%)

1M-100M 47/1646(2.86%) 126/282(44.68%) 245/1646(14.88%) 391/1646(23.75%)
100M+ 4/36(11.11%) 3/12(25%) 0/36(0%) 6/36(16.67%)

Table 3: GooglePlay App Vulnerability Based on Number of Downloads

Category Service Confusion User Confusion PendingIntent Overall

Medical 16/277(5.78%) 157/184(85.33%) 50/277(18.05%) 181/277(65.34%)
Shopping 38/676(5.62%) 383/497(77.06%) 116/676(17.16%) 449/676(66.42%)
Business 33/1027(3.21%) 605/790(76.58%) 151/1027(14.70%) 724/1027(70.50%)

Health & Fitness 10/455(2.20%) 258/359(71.87%) 46/455(10.11%) 291/455(63.96%)
Social 13/719(1.81%) 349/574(60.80%) 90/719(12.52%) 395/719(54.94%)

Finance 8/533(1.50%) 285/371(76.82%) 87/533(16.32%) 333/533(62.48%)
Personalization NA 21/37(56.76%) 3/320(0.94%) 23/320(7.19%)
Communication 5/381(1.31%) 176/274(64.23%) 49/381(12.86%) 207/381(54.33%)

Table 4: GooglePlay App Vulnerability Based on Category

(Baidu, Gfan, Mumayi, Appchina and Xiaomi), 75.7% are vulner-
able, with the leading cause of insecure broadcast channels (unpro-
tected receiver or broadcast without target package). Among all
the Google-Play apps, 24.8% are problematic, with most of them
suffering from the lack of User-ID checks. It is interesting to see
that the geographic split also brings in a discrepancy in the types
of vulnerabilities among those apps: Chinese apps are completely
free from the service confusion problems (e.g., integration of both
GCM and ADM), as they typically just incorporate a single ser-
vice, while only a small set of apps on Google Play have the IPC
problems. When it comes to push-messaging services, Table 7
shows that also more than half of them are vulnerable. Particularly,
most service SDKs in China have security weaknesses, the main
cause for the pervasiveness of vulnerable apps there. 4 syndication
services also contain different kinds of problems.
Consequences. When we look at the categories of the apps that
tend to be problematic, as illustrated in Table 3, it is alarming to see
that all those with sensitive user data appear on the top. 50 - 70%
of the Google-Play apps for business, shopping, medical, health, fi-
nance, communication and social are found to be riddled with loop-
holes, mostly caused by missing User-ID checks (55 - 85%). Also
10 - 18% of these apps expose PendingIntent, which essen-
tially allows a malicious app to inject any content to their receivers
and intercept all of their users’ private messages through replacing
their registration IDs with that of an attack device. In addition, over
5% of medical and shopping apps have the service confusion prob-
lem, vulnerable to message injection from the malicious apps that
impersonate the messaging service app not on the victim’s device.
Note that this ratio is higher than the average (2.17%).

The consequences of the attacks are dire. Once successfully ex-
ploiting target apps’ User-ID or service-confusion weaknesses, the
adversary can fake messages and post them to the victim’s apps
(Pinterest, Yelp etc.). Also through the PendingIntent bound
to the attack device, private user information like chat messages,
financial information, etc. will be delivered to the adversary. For
tens of thousands of apps in the Chinese markets, their vulnerable
IPCs may enable both injection of misleading messages and dis-
closure of confidential user data. Table 8 presents examples of the
information assets at risk in the presence of successful attacks.
Impact and trend. The impacts of the vulnerabilities we discov-
ered are significant: from Table 4, we can see that over 23% of
the popular apps (each with more than 1 million downloads) are
vulnerable, which includes 6 (such as Facebook, Skype) being in-

Service Type Weaknesses

Urban Airship Syndication Service Confusion
PushIO Syndication Insecure Broadcast Channel/

CID Exposure/Service Confusion
Push Woosh Syndication Insecure Broadcast Channel/

CID Exposure
Pushapps Syndication CID Exposure

Baidu Third-Party Insecure Broadcast Channel
Getui Third-Party Insecure Broadcast Channel

Xiaomi Third-Party Insecure Broadcast Channel
XG Push Third-Party Insecure Broadcast Channel/

CID Exposure
Bmob Third-Party Insecure Broadcast Channel
Yunba Third-Party Insecure Broadcast Channel
Zhiyou Third-Party Insecure Broadcast Channel
Mpush Third-Party Insecure Broadcast Channel/

CID Exposure
LeanCloud Third-Party Insecure Broadcast Channel

Umeng Third-Party Insecure Broadcast Channel/
CID Exposure(risk)

JPush Third-Party Insecure Broadcast Channel
Shengda Push Third-Party CID Exposure

Huawei Third-Party Insecure Broadcast Channel

Table 7: Push-Messaging Services Weaknesses
App Downloads Vul type Sample Contents at Risk

Facebook 500M+ Service Confusion Messages
Skype 100M+ Service Confusion Messages

Pinterest 10M+ User Confusion Messages
Yelp 10M+ User Confusion Messages

Linkedin 10M+ PendingIntent Invitation, Messages
eBay 50M+ PendingIntent Shipment, Messages

Table 8: Examples of Vulnerable Popular Apps

stalled over 100 million times. Also interestingly, the service con-
fusion problem tends to occur in the apps either extremely popular
(above 100 million downloads) or no one uses (below 100 installs).
Specifically, over 3% of the apps with more than 1 million down-
loads have the problem, in contrast to 1.7% among those with 100
- 1 million downloads. This could be explained by the observation
that those popular apps are more likely to integrate multiple push-
messaging services and therefore more exposed to this security risk.
In the meantime, over 8% of the least popular apps also contain the
security flaws. It turns out that they were all built on the templates
developed by the companies like app4mobile and conduit, which
integrate multiple push-messaging services.

Also we found that popular apps are more likely to disclose
PendingIntent than less popular ones, as illustrated in Table 4.
Such disclosure almost always happens to those using the vulnera-

1269

ble GCM template [5]. Apparently, Google needs to do more to fix
this problem. The only flaw distributed more in line with what is
expected is the User-ID confusion: the more popular the apps are,
the less likely they have this issue. On the other hand, as discussed
before (Section 4.1), still high-profile apps like Pinterest (10M+
downloads) and Yelp (10M+ downloads) contain this flaw.

5. RELATED WORK
Security analysis of push-messaging services. Little has been
done on evaluating the security qualities of push-messing services
until very recently, when researchers took a close look at the GCM,
ADM, UrbanAirship and a Chinese Push Cloud [28]. What have
been found include the security-critical vulnerabilities in GCM’s
cloud-side security checks and a few client-side problems mostly
caused by exposure of PendingIntent. Different from this
prior work, which is based upon manual analysis of a small set
of services and apps, our research is much deeper and broader: we
built an automatic analysis tool and ran it to scan 30 popular cloud-
messaging services and 35,173 popular apps; we found 17 vulnera-
ble SDKs and 17,668 faulty apps (including high-profile ones such
as Facebook, Skype, Baidu, etc.), with a significant portion of them
involving previously unknown security flaws.
Android ICC security. The security issues of Android IPC or
more precisely Inter-Component Communication (ICC) have been
extensively studied. Comdroid [15] and other work [18, 17] inves-
tigate the Intent-based attack surface, including the insecure broad-
cast channel issue. Other prior work identifies different kinds of
risks in the ICC channel, including information leaks and pollution
in content provider [38], permission re-delegation problems [20]
and capability leaks [29, 23]. Different from these prior studies,
what we want to understand here is the security implications of the
ICC vulnerabilities to push-messaging services. For this purpose,
we developed a unique analysis technique, which utilizes the an-
chor discovered from sample code to backtrack all the ICC calls
that pass the message received by an SDK to its hosting app and
inspect their security settings. Also, the understanding of the un-
protected receivers and other ICC interfaces has also been put in the
context of push-messaging service: for example, our study reveals
a design flaw in Baidu Cloud Push (Section 4.1), which actually
deliberately exposes an app’s ICC receiver for coordinating differ-
ent apps integrating its SDK. When it comes to PendingIntent,
prior research briefly mentions the lack of origin information within
the Intent mechanism [33], which forces the app developer to uti-
lize PendingIntent to provide the origin of an ICC request.
Our prior research [28] first demonstrates the security impacts of
such exposures on push-messaging services. However, never be-
fore has any effort been made to automatically detect such a vul-
nerability, as we did in our research. Furthermore, the service con-
fusion problem has never been studied before: unlike the prior work
that focuses on unprotected components, here we look at the situ-
ation where the permissions for protecting these components are
completely missing in a system.
Static analysis on Android. How to statically analyze Android
system components and app code has been studied for years. Many
tools have been built to identify vulnerabilities [15, 29, 16, 19, 25,
32, 31], privacy leaks [21, 37, 36, 22, 34, 35] and malware [39,
13, 24]. Particularly, many systems are designed to detect ICC
vulnerabilities. For example, Comdroid [15] detects multiple in-
tent related vulnerabilities. Chex [29] analyzes permission, capa-
bility and privacy data leakage caused by unprotected components.
ContentScope [38] detects the vulnerabilities in content providers.
Woodpecker analyzes the ICC vulnerabilities in the preloaded apps
from firmware. Compared to these prior studies, our work focuses

on ICC vulnerabilities in push messaging service SDKs and their
integrations within apps, and proposes novel sample code guided
analysis techniques to detect unprotected ICC interfaces. Further,
data flow analysis is widely used in static analysis of mobile appli-
cations. Particularly, Amandroid [34] constructs the Inter-component
Data Flow Graph (IDFG) and data dependence graph (DDG) to de-
tect data flow. DroidSafe [22] builds a model for Android runtime
named Android Device Implementation (ADI) and performs an in-
formation flow analysis using the model. FlowDroid [14] is a pre-
cise static taint analysis tool for Android apps, which we utilized to
build Seminal. Its problem is the limited capability to handle ICC
(IPC as discussed in the paper). ICC inference (for linking call
sites to their handlers) is the focus of Epicc [30], which has been
combined with FlowDroid in the systems like Didfail [26] and Ic-
cTA [27] to enable both inter-component and intra-component data
flow analysis. However, these generic data flow analysis tools aim
at evaluating the whole app, instead of just the integration part we
are interested in. As a result, they are not efficient for our pur-
pose. By comparison, the unique design of Seminal, particularly
the anchor-based, layered security analysis (Section 3.3), making
it potentially much more efficient than those generic tools when
analyzing push-messaging integrations.

6. DISCUSSION
Running Seminal on our app collection, we discovered tens of

thousands of vulnerable apps. The presences of security risks within
these apps have been validated through a manual analysis on ran-
domly selected samples. This, however, does not mean that all
these apps can be exploited. A successful attack on a known vulner-
ability often depends on other issues such as availability of message
formats (for message injection). Sometimes, we may even need to
leverage multiple flaws to make an end-to-end attack work. Given
the large number of problematic apps we discovered, it is impos-
sible for us to exploit even a small portion of them within a short
period of time. Therefore, except a few high-profile apps we indeed
broke, the other findings are security risks in a strict sense. Never-
theless, all such problems are indeed security critical, rendering the
apps much more exposed to security threats than those that do not
have them.

The techniques we developed and the study we performed are
nothing more than a first step towards effective protection of push-
messaging services. After all, we only looked at the service inte-
gration between app and SDK. It is still less clear whether other
security problems exist on the cloud front. This can be addressed
by formal verification of the whole service. To this end, new tech-
niques need to be developed for probing the cloud-side program
logics to build a more accurate model. Also, the rapid evolution on
the messaging-service infrastructure requires continuous studies to
identify its new security-related features.

7. CONCLUSION
In this paper, we report the first large-scale, systematic security

analysis on the integration of push-messaging services within An-
droid apps. This study was performed using Seminal, a new tool for
automatically verifying key security properties in such integrations.
Seminal is designed to leverage unique features of push-messaging
services, focusing on only a small portion of the app code related to
the integration. Running it on 30 leading cloud-messaging services
and over 35,173 popular apps, we are amazed by the scope and the
magnitude of the security problem in those services: more than half
of the service SDKs, over 20% of Google-Play apps and more than
50% apps from mainstream Chinese markets involve critical secu-

1270

rity risks (see Section 6), allowing the adversary to impersonate
trusted parties to post content to the victim’s apps and intercept her
private messages. More importantly, most of the flaws are never
known before. Our findings indicate the seriousness of the prob-
lem, which requires intensive effort to address, and our new tech-
nique makes the first step toward improving the security qualities
of this important mobile cloud service.

8. ACKNOWLEDGMENTS
The project is supported in part by National Science Foundation

CNS-1117106, 1223477 and 1223495. Authors from Peking Uni-
versity are supported in part by National Development and Reform
Commission (NDRC) under project "Guidelines for Protecting Per-
sonal Information". Kai Chen was supported in part by NSFC
61100226.

9. REFERENCES
[1] Android Platform Distribution. https://developer.

android.com/about/dashboards/index.html.
[2] Baidu Cloud Push.

http://developer.baidu.com/cloud/push.
[3] CVE-2012-6636. https://web.nvd.nist.gov/

view/vuln/detail?vulnId=CVE-2012-6636.
[4] CVE-2014-6041.

http://nvd.nist.gov/nvd.cfm?cvename=CVE-
2014-6041.

[5] GCM Template Code. http://developer.android.
com/google/gcm/c2dm.html.

[6] Getui. http://www.igetui.com/.
[7] JPush. https://www.jpush.cn/.
[8] Push Woosh. https://www.pushwoosh.com/.
[9] PushIO.

http://www.responsys.com/marketing-
cloud/products/push-IO.

[10] Soot. http://www.sable.mcgill.ca/soot/.
[11] Supplement materials. https:

//sites.google.com/site/perplexedmsg/.
[12] UrbanAirship. http://urbanairship.com/.
[13] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck,

and C. Siemens. Drebin: Effective and explainable detection
of android malware in your pocket. In Proceedings of the
Annual Symposium on Network and Distributed System
Security (NDSS), 2014.

[14] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel. Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design
and Implementation, page 29. ACM, 2014.

[15] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner.
Analyzing inter-application communication in android. In
Proceedings of the 9th international conference on Mobile
systems, applications, and services, pages 239–252. ACM,
2011.

[16] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An
empirical study of cryptographic misuse in android
applications. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security, pages
73–84. ACM, 2013.

[17] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study
of android application security. In USENIX Security
Symposium, 2011.

[18] W. Enck, M. Ongtang, P. D. McDaniel, et al. Understanding
android security. IEEE Security & Privacy, 7(1):50–57,
2009.

[19] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner,
B. Freisleben, and M. Smith. Why eve and mallory love
android: An analysis of android ssl (in) security. In
Proceedings of the 2012 ACM conference on Computer and
communications security, pages 50–61. ACM, 2012.

[20] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin.
Permission re-delegation: Attacks and defenses. In USENIX
Security Symposium, 2011.

[21] C. Gibler, J. Crussell, J. Erickson, and H. Chen.
AndroidLeaks: automatically detecting potential privacy
leaks in android applications on a large scale. Springer,
2012.

[22] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and
M. Rinard. Information-flow analysis of android applications
in droidsafe. In Proc. of the Network and Distributed System
Security Symposium (NDSS). The Internet Society, 2015.

[23] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
detection of capability leaks in stock android smartphones. In
Proceedings of the 19th Annual Symposium on Network and
Distributed System Security, 2012.

[24] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.
Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th international
conference on Mobile systems, applications, and services,
pages 281–294. ACM, 2012.

[25] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri. Code
injection attacks on html5-based mobile apps:
Characterization, detection and mitigation. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 66–77. ACM, 2014.

[26] W. Klieber, L. Flynn, A. Bhosale, L. Jia, and L. Bauer.
Android taint flow analysis for app sets. In Proceedings of
the 3rd ACM SIGPLAN International Workshop on the State
of the Art in Java Program Analysis, pages 1–6. ACM, 2014.

[27] L. Li, A. Bartel, T. F. D. A. Bissyande, J. Klein, Y. Le Traon,
S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and
P. McDaniel. Iccta: detecting inter-component privacy leaks
in android apps. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE 2015), 2015.

[28] T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang, and
X. Han. Mayhem in the push clouds: Understanding and
mitigating security hazards in mobile push-messaging
services. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
pages 978–989. ACM, 2014.

[29] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. Chex: statically
vetting android apps for component hijacking vulnerabilities.
In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 229–240. ACM, 2012.

[30] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon. Effective inter-component
communication mapping in android with epicc: An essential
step towards holistic security analysis. In USENIX Security
2013, 2013.

[31] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and
G. Vigna. Execute this! analyzing unsafe and malicious

1271

dynamic code loading in android applications. In
Proceedings of the 20th Annual Network & Distributed
System Security Symposium (NDSS), 2014.

[32] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan.
Smv-hunter: Large scale, automated detection of ssl/tls
man-in-the-middle vulnerabilities in android apps. In
Proceedings of the 19th Network and Distributed System
Security Symposium, 2014.

[33] R. Wang, L. Xing, X. Wang, and S. Chen. Unauthorized
origin crossing on mobile platforms: Threats and mitigation.
In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 635–646.
ACM, 2013.

[34] F. Wei, S. Roy, X. Ou, and Robby. Amandroid: A precise and
general inter-component data flow analysis framework for
security vetting of android apps. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and
Communications Security, CCS ’14, pages 1329–1341, New
York, NY, USA, 2014. ACM.

[35] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective
real-time android application auditing. In IEEE S&P, 2015.

[36] Z. Yang and M. Yang. Leakminer: Detect information
leakage on android with static taint analysis. In Software
Engineering (WCSE), 2012 Third World Congress on, pages
101–104. IEEE, 2012.

[37] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S.
Wang. Appintent: Analyzing sensitive data transmission in
android for privacy leakage detection. In Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security, pages 1043–1054. ACM, 2013.

[38] Y. Zhou and X. Jiang. Detecting passive content leaks and
pollution in android applications. In Proceedings of the 20th
Annual Symposium on Network and Distributed System
Security, 2013.

[39] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off
of my market: Detecting malicious apps in official and
alternative android markets. In NDSS, 2012.

APPENDIX
Models and Security Properties
To analyze the security qualities of different push-messaging ser-
vices, we first need to find out the security properties they are ex-
pected to have. In this section, we describe how we model these
services and identify their necessary properties, with a focus on
their integrations within apps. Understanding the integrations is a
critical first step towards evaluating a push-messaging service’s se-
curity quality, as the prior research [28] clearly indicates that the
weakest link of security protection is on the mobile device. Also,
due to our limited observation of what happens within the cloud
(e.g., the program logic of the connection server), a study on com-
plete services is hard. Following we describe the model and prop-
erties. All the information used here comes from the specifications
of existing messaging services.
Models. The security goals of a push-messaging service can be
described as follows: (1) a message mu for a user u from an app
server appsrv should only be pushed to u and no one else; (2) u
only gets her own message mu (not others) from the authorized
server appsrv (not from an unauthorized party). The security poli-
cies for achieving these goals need to be enforced by the refer-
ence monitors distributed across different entities within a push-

messaging service. Specifically, such a service can be modeled
as 〈S,A, I〉. Here S is a set of states where a message or a ser-
vice request is being processed by a service entity, such as the state
of app server (appsrv), connection server (connsrv), syndication
server (synsrv), device-side service app (client), SDK (sdk) or
app (app). A is a set of security-related actions that happen on
a state. For example, A(connsrv) = (sreceive(i, appsrv →
connsrv), check(i), ssend(convert(i), connsrv → client)) m-
odels the operations performed by a connection server (at the conn
srv state) given an input i from an app server: sreceive receives
i from the network and authenticates its sender; check verifies i
against a security policy that only an authorized sender (the one
bound to the registration ID in i) is allowed to push a message to
the ID; convert transforms i to i′ by replacing the registration ID
with the target device and app, and then ssend sends the input to
the service app (across the network) through an authenticated se-
cure channel and also causes the system to move to the next state
client. Finally I is the collection of inputs to those states, in
which i is a concatenation of identifier (dev), authentication tokens
(e.g., appid) and message (m).

appsrv

connsrv client

app

i = (m, regID)

sreceive(i, appsrv->connsrv)
Check(i)

ssend(convert(i), connsrv->client)

i = (dev, appid, m)

sdreceive(i , client->app)
ucheck(i , u)

sreceive(i , connsrv->client)
sdsend(i , client->app)

i = (dev, appid, m)

Cloud Mobile Device

Actions:

ssend/sreceive:
Secure Communication over Network

sdsend/sdreceive:
Secure Communication on Device

check:
Security Policy Verification

ucheck:
User ID Inspection

Figure 8: Manufacturer Push Service Security Model
Using this simple model, Figure 8 illustrates the security checks

expected when a message is pushed to the user through the manu-
facturer service. Specifically, for the manufacturer service, after the
input i′ = (dev, appid,m) is sent to client, the service app contin-
ues to perform (sreceive(i′, connsrv → client), sdsend(i′, cli
ent → app)), where sdsend passes a message on device to an-
other Android component through an authenticated secure chan-
nel. Intuitively, these actions include authenticating the connection
server and sending i′ to the target app. Then, app further goes
through (sdreceive(i′, client→ app), ucheck(i′, u)), where sdr
eceive verifies the sender on the same device and ucheck inspects
the user ID within i′ against that of the current login user u to make
sure that she is the right recipient. Note that such a verification can
only happen within the app, because no other entities in the ser-
vice can differentiate two users sharing the same app on the same
device, which if not handled properly can lead to serious security
breaches (Section 4.1).

For a third-party service, the reference monitor on the connec-
tion server connsrv performs exactly the same operations as de-
scribed above, except that ssend at connsrv sends i′ directly to
sdk through a socket connection. Here ssend uses the CID gener-
ated by the SDK during the registration process to establish such a
secure channel. In the state sdk, actions (sreceive(i′, connsrv →
sdk), sdsend(i′, sdk → app)) are taken to pass i′ securely to the
app, which further checks the user information within the input
(ucheck). When it comes to the syndication service, an additional
state synsrv needs to go through during message pushing, where a
function sconvert replaces the CID within i (from the app server)
with the registration ID of a manufacturer cloud. Also on the device
side, the client state moves to sdk before arriving at app. Along
the transitions, authentication needs to be performed at every state.

1272

