
Perplexed Messengers from the Cloud:
Automated Security Analysis of Push-Messaging Integrations

Yangyi Chen1*, Tongxin Li2*, XiaoFeng Wang1, Kai Chen1, 3 and Xinhui Han2

1Indiana University Bloomington
2Peking University

3Institute of Information Engineering, Chinese Academy of Sciences

*The names of the first two authors are in alphabetical order.

What are Push Messages?

• Major channel for user engagement.

Push-Messaging Services

• Push messages from app server to mobile devices.
➢Private messages, Bank account balances, etc.

• Push commands to devices.

➢Erasing data on lost devices, etc.

2. App

Registration (RegID)

How to Push Messages?

App Server

Set Up

1.Push

Messages

App Server

2.Push

Messages

Service

App

Connection

Server

Connection

Server

Push

Messages

App

Service

App

App

Different Push-Messaging Services

▪ Manufacturer Push-Messaging Services

• Google Cloud Messaging(GCM), Amazon Device

Messaging(ADM), etc.

▪ Third-party Services (Chinese Market)

• SDK instead of service app

• Baidu Push, JPush, etc.

▪ Syndication Services

• Urban Airship, PushIO, Push Woosh, etc.

▪ Publication from CCS 2014

• Manually analyzed 4 services

➢GCM, ADM, UrbanAirship and one Chinese service

• Manually discovered security risks in 63 apps

➢Steal/Inject push messages

▪ Tip of iceberg?

Are Push-Messaging Services Secure?

What we do

▪ Identified a set of security principles and properties

▪ Seminal

• Evaluates the security qualities of the service’s SDKs and

their integrations within different apps

▪ Automatically scanned

• 30 services

• 35,173 apps

▪ Discovered new types of security risks

Security Principles and Properties

Authorized

App Server

Malicious

App Server

Principles: Properties:

▪ The app integrating the service should

communicate with the service or the SDK

through an authenticated secure channel.

▪ The app should check whether an incoming

message belongs to the current user.

▪ CID (the authentication token for the third-

party or syndicated service) should always

be kept secret.

User

Attacker

Attacks

▪ Unprotected IPC channel

▪ From property: Secure channel

Victim App Service App/SDK

Protection:

1. IPC components should be private or protected by permissions

2. IPC calls should target a specific package

Steal/Inject messages

Malicious App

Attacks

▪ PendingIntent Leakage

• From property: Secure Channel

• PendingIntent can break the secure IPC channel

App A App B

PendingIntent

Predefined operations:

startActivity

sendBroadcast

startService

Intent

Optional:

Add new data in the intent

Send the Intent:

1. With predefined

operation

2. With App A’s identity

Attacks

▪ PendingIntent Leakage

Victim App Malicious App

PendingIntent

Blank Intent

Intent

Push messages/Registration ID

With App A’s identity/Permission

Send to protected components

Attacks

CID leakage

▪ From property:

•Keep CID secret

▪ CID:

•Registration ID

•Can be used to get

push messages

Connection

with CID

Third-party SDK

Push

messages

Connection with victim’s CID

Steal push messages

Leakage:

1. By insecure IPC channel

2. CID generated with public

resources

Malicious app

Connection

Server

New Attacks

▪ Service Confusion Problem

• From property:

➢ Secure channel

➢Receivers protected by permissions

• Question:

➢Who has the permission?

– Google’s service(GCM), Amazon’s service(ADM)

➢Any exception?

New Attacks

▪ Service Confusion Problem

• When apps/SDKs integrate multiple push-messaging services

receiver

receiver

Permission held by Google service

Google Service app

Permission held by Amazon service

Amazon Service app

Malicious app

I have ADM permission!Push message/Registration ID

Victim App

New Attacks

▪ Service Confusion Problem

• Impersonate push messaging service

➢Steal messages

➢Send fake messages

➢Facebook, Skype, UrbanAirship

New Attacks
▪ User Confusion Problem

• Push Messages are for the app, not for the user

Victim App

App Server

Malicious App

A message for

malicious user

RegID leak:

1. Android vulnerabilities

CVE-2012-6636

CVE-2014-6041

more

2. CID leakage

My regID is also IDvictim

My regID is IDvictim Connection

Server

Push Message/IDvictim

Forget to

check userID

New Attacks-demo

Challenges for Analysis

▪ It is less clear

• What service has been

integrated there

• The interface between the app

and the service SDK (anchor)

▪ Large-scale analysis

▪ Analyze demo code

• Get fingerprints

• Find anchor

▪ Three stage analysis

• Clue Finder

➢Analyze demo code

• SDK Inspector

➢Analyze SDK

• Integration Scanner

➢Analyze app

Seminal Architecture

Clue Finding

▪ Analyze sample code

• A few hundred lines with a manifest file

• Look for service type, fingerprint, anchor

Sample Code

Service Type

Fingerprint

Anchor

SDK Analysis

▪ Insecure IPC

Anchor
IPC

component
……

IPC
component

Check:

1. Components should be private or protected

by permissions

2. IPC calls should target a specific package

1. Backward slicing

2. Link IPC

SDK Analysis

▪ PendingIntent leakage

Leak

PendingIntent

through

insecure IPC

PendingIntent

contains a

blank intent

SDK Analysis

▪ CID leakage

API to get

CID

IMEI

Device ID

……

Manually label this

according to the

integration instructions

Random,

UUID

Backward slicing

Find sources

CID

leakage

through

IPC

Taint analysis with Flowdroid

Integration-Specific App Checking

▪ User ID filtering (User Confusion)

• Taint analysis

Tainted

String or long

from push

message

Non-constant

value stored

in the app

(User ID)

Compare

Integration-Specific App Checking
▪ User ID filtering (User Confusion)

• A breadth-first, layered analysis

• Taint analysis over partial CFG

• Heuristic: 3 layers

▪ SDK Risks

• We discovered 17 (>50%) security-critical flaws within 30 SDK

• Always completed the analysis within 10 minutes

▪ App Risks

• Scanned 35,173 apps using push messaging

• Find 26,069 potential problems in 17,668 (>50%) apps

• On average 108 seconds were spent on each app

Measurement and Discovery

Service Type Weeknesses

UrbanAirship Syndication Service Confusion

PushIO Syndication Insecure Broadcast Channel/CID Exposure/Service Confusion

Push Woosh Syndication Insecure Broadcast Channel/CID Exposure

Pushapps Syndication CID Exposure

Baidu Third-Party Insecure Broadcast Channel

Getui Third-Party Insecure Broadcast Channel

Xiaomi Third-Party Insecure Broadcast Channel

XG Push Third-Party Insecure Broadcast Channel/CID Exposure

Bmob Third-Party Insecure Broadcast Channel

Yunba Third-Party Insecure Broadcast Channel

Zhiyou Third-Party Insecure Broadcast Channel

Mpush Third-Party Insecure Broadcast Channel/CID Exposure

LeanCloud Third-Party Insecure Broadcast Channel

Umeng Third-Party Insecure Broadcast Channel/CID Exposure(risk)

JPush Third-Party Insecure Broadcast Channel

ShengdaPush Third-Party CID Exposure

Huawei Third-Party Insecure Broadcast Channel

Vulnerable Popular Apps

App Downloads Vulnerability Type Sample Contents at Risk

Facebook 500M+ Service Confusion Messages

Skype 100M+ Service Confusion Messages

Pinterest 10M+ User Confusion Messages

Yelp 10M+ User Confusion Messages

Linkedin 10M+ PendingIntent Invitation, Messages

eBay 50M+ PendingIntent Shipment, Messages

Conclusion
▪Identified a set of security principles and properties

▪ Seminal
•Automatic analysis tool for push messaging services and

apps integrating them

•Sample code based, three stages

▪ Large-scale scan
•30 SDKs and more than 30,000 apps

•many risks discovered

▪ New attacks

• Service confusion, User confusion and so on

Thanks!

