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What are Push Messages?



• Major channel for user engagement.

Push-Messaging Services 

• Push messages from app server to mobile devices.
➢Private messages, Bank account balances, etc.

• Push commands to devices.

➢Erasing data on lost devices, etc.
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Different Push-Messaging Services 

▪ Manufacturer Push-Messaging Services

• Google Cloud Messaging(GCM), Amazon Device 

Messaging(ADM), etc.

▪ Third-party Services (Chinese Market)

• SDK instead of service app

• Baidu Push, JPush, etc.

▪ Syndication Services

• Urban Airship, PushIO, Push Woosh, etc. 



▪ Publication from CCS 2014

• Manually analyzed 4 services

➢GCM, ADM, UrbanAirship and one Chinese service

• Manually discovered security risks in 63 apps

➢Steal/Inject push messages

▪ Tip of iceberg?

Are Push-Messaging Services Secure?



What we do

▪ Identified a set of security principles and properties

▪ Seminal

• Evaluates the security qualities of the service’s SDKs and 

their integrations within different apps

▪ Automatically scanned 

• 30 services

• 35,173 apps

▪ Discovered new types of security risks



Security Principles and Properties
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Principles: Properties:

▪ The app integrating the service should 

communicate with the service or the SDK 

through an authenticated secure channel.

▪ The app should check whether an incoming 

message belongs to the current user.

▪ CID (the authentication token for the third-

party or syndicated service) should always 

be kept secret.
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Attacks

▪ Unprotected IPC channel

▪ From property: Secure channel

Victim App Service App/SDK

Protection:

1. IPC components should be private or protected by permissions

2. IPC calls should target a specific package

Steal/Inject messages

Malicious App



Attacks

▪ PendingIntent Leakage

• From property: Secure Channel

• PendingIntent can break the secure IPC channel

App A App B

PendingIntent

Predefined operations:

startActivity

sendBroadcast

startService

Intent

Optional:

Add new data in the intent

Send the Intent:

1. With predefined 

operation

2. With App A’s identity



Attacks

▪ PendingIntent Leakage
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Attacks

CID leakage

▪ From property: 

•Keep CID secret

▪ CID:

•Registration ID
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New Attacks

▪ Service Confusion Problem

• From property: 

➢ Secure channel

➢Receivers protected by permissions

• Question:

➢Who has the permission?

– Google’s service(GCM), Amazon’s service(ADM)

➢Any exception?



New Attacks

▪ Service Confusion Problem

• When apps/SDKs integrate multiple push-messaging services
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New Attacks

▪ Service Confusion Problem

• Impersonate push messaging service

➢Steal messages

➢Send fake messages

➢Facebook, Skype, UrbanAirship



New Attacks
▪ User Confusion Problem

• Push Messages are for the app, not for the user
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RegID leak:

1. Android vulnerabilities

CVE-2012-6636

CVE-2014-6041

more

2. CID leakage
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New Attacks-demo



Challenges for Analysis

▪ It is less clear

• What service has been 

integrated there

• The interface between the app 

and the service SDK (anchor)

▪ Large-scale analysis

▪ Analyze demo code

• Get fingerprints

• Find anchor

▪ Three stage analysis

• Clue Finder

➢Analyze demo code

• SDK Inspector

➢Analyze SDK

• Integration Scanner

➢Analyze app



Seminal Architecture



Clue Finding

▪ Analyze sample code

• A few hundred lines with a manifest file

• Look for service type, fingerprint, anchor
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SDK Analysis

▪ Insecure IPC
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IPC 
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Check: 

1. Components should be private or protected 

by permissions

2. IPC calls should target a specific package

1. Backward slicing
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SDK Analysis

▪ PendingIntent leakage 
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SDK Analysis

▪ CID leakage 
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Integration-Specific App Checking 

▪ User ID filtering (User Confusion)

• Taint analysis
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Integration-Specific App Checking 
▪ User ID filtering (User Confusion)

• A breadth-first, layered analysis

• Taint analysis over partial CFG

• Heuristic: 3 layers



▪ SDK Risks

• We discovered 17 (>50%) security-critical flaws within 30 SDK

• Always completed the analysis within 10 minutes

▪ App Risks

• Scanned 35,173 apps using push messaging   

• Find 26,069 potential problems in 17,668 (>50%) apps

• On average 108 seconds were spent on each app

Measurement and Discovery



Service Type Weeknesses

UrbanAirship Syndication Service Confusion

PushIO Syndication Insecure Broadcast Channel/CID Exposure/Service Confusion

Push Woosh Syndication Insecure Broadcast Channel/CID Exposure

Pushapps Syndication CID Exposure

Baidu Third-Party Insecure Broadcast Channel

Getui Third-Party Insecure Broadcast Channel

Xiaomi Third-Party Insecure Broadcast Channel

XG Push Third-Party Insecure Broadcast Channel/CID Exposure

Bmob Third-Party Insecure Broadcast Channel

Yunba Third-Party Insecure Broadcast Channel

Zhiyou Third-Party Insecure Broadcast Channel

Mpush Third-Party Insecure Broadcast Channel/CID Exposure

LeanCloud Third-Party Insecure Broadcast Channel

Umeng Third-Party Insecure Broadcast Channel/CID Exposure(risk)

JPush Third-Party Insecure Broadcast Channel

ShengdaPush Third-Party CID Exposure

Huawei Third-Party Insecure Broadcast Channel



Vulnerable Popular Apps

App Downloads Vulnerability Type Sample Contents at Risk

Facebook 500M+ Service Confusion Messages

Skype 100M+ Service Confusion Messages

Pinterest 10M+ User Confusion Messages

Yelp 10M+ User Confusion Messages

Linkedin 10M+ PendingIntent Invitation, Messages

eBay 50M+ PendingIntent Shipment, Messages



Conclusion
▪Identified a set of security principles and properties

▪ Seminal
•Automatic analysis tool for push messaging services and 

apps integrating them

•Sample code based, three stages

▪ Large-scale scan
•30 SDKs and more than 30,000 apps

•many risks discovered

▪ New attacks

• Service confusion, User confusion and so on



Thanks!


