
Automatically Detect Flaws in Cloud
Platforms and System Software

Kang Li
Department of Computer Science
University of Georgia

About Me
}  @ UGA

}  Faculty of Computer Science
}  Leading the Security Research Cluster

}  Beyond UGA

}  Frequent BlackHat and ShmooCon Speaker
}  Founder of the disekt CTF Team

Motivation for Automation (analysis, offense/defense)

 1. Demand from Software Practice

 2. The (in)Balance of “Hacking” Power

Demand from SW practice
}  Sample High Profile Victims in the News

}  High Profile Vulnerabilities
}  Heartbleed (4/2014), ShellShock (9/2014),

 POODLE (12/2014), GHOST (4/2015)

Golden Age of Bugs!

Demand from SW practice
}  We (& the whole SW industry) are generating so many

bugs, that the Onion made the following “news” when
China announce to abandon One-Child Policy in October 2015:

Demand from SW practice
}  We (& the whole SW industry) are generating so many

bugs, that the Onion made the following “news” when
China announce to abandon One-Child Policy in October 2015:

Motivation for Automation (analysis, offense/defense)

 1. Demand from Software Practice

 2. The (in)Balance of “Hacking” Power

The (in)Balance of “Hacking” Power

TOP 3 CTF Teams in DEFCON CTF Finals

CTF will be Played by Machines	

DARPA Cyber Grand Challenge

http://cybergrandchallenge.com/

DARPA Cyber Grand Challenge

Other Success Example (Chess Master)	

Source: Mike Walker’s presentation at the ISSTA 2014 conference 	

Can Machine Do It (auto analysis, offense/defense)?

Example: CrackMe Challenges

Can Machine Do It (auto analysis, offense/defense)?

Example: CrackMe Challenges

Symbolic Execution
}  Execution with Concrete values

}  Input
 value = 0xDEADBEEF

}  Output
 RA = 0x0000BEEF;

}  Execution with Symbolic values
}  Input

 value = α
}  Output

 RA = α & 0x0000FFFF;

 …
update_RA (int value)
{

 RA = value & 0x0000FFFF;

 return RA
}

Code Snippet

Symbolic Execution with Branches

 …
update_RA (int value)
{

 if (value > 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

 return RA

}

Code Snippet

}  Possible Execution Paths

α>0
and

Ra=α

α<=0
and

Ra=α&0xFFFF

True	
 False	

Fork Execution	

Can We Do It (auto analysis, offense/defense)?

Solving CrakeMe with Symbolic Execution

Progress of Auto Program Analysis
}  Detection of Well-defined Vulnerabilities

}  Static & Dynamic Checking for Properties
}  E.g. Memory Access Out of Bound

}  Rich Set of Prior Research Results/Tools
}  KLEE, BitBlaze, Mayhem, S2E, …

Property Checking
}  Possible Execution Paths

 …
update_RA (int value)
{

 if (value > 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

 return RA

}

Code Snippet

}  Does the following condition hold for all possible input?
 RA>=0

α>0
and

Ra=α

α<=0
and

Ra=α&0xFFFF

True	
 False	

Fork Execution	

Property Checking

}  Does the following condition hold for all possible input?
 RA>=0

For each path,
solving the constrain

α>0
and

Ra=α

α<=0
and

Ra=α&0xFFFF

True	
 False	

Fork Execution	

 (Ra>=0) && (Path Condition)	

Property Checking

No solution means the following statement holds
 RA>=0

For the early example, the constraints to solve are:

 (Ra>=0) && (α>0 &&Ra=α)	

 (Ra>=0) && (α<=0 &&Ra=α&0xFFFF)	

Applying Symbolic Execution
}  Detection of Well Defined Vulnerabilities

}  Manually define rules to check
}  E.g. memory access out of bound, double free on the same path

}  Detection of Flaws in VMs and Embedded Firmware
}  Checking for specification violation

}  Cloud/VM Platform Implementations
}  Firmware (Bootloader) Implementations

Applying Symbolic Execution
}  Detection of Well Defined Vulnerabilities

}  Manually define rules to check
}  E.g. memory access out of bound, double free on the same path

}  Detection of Flaws in VMs and Embedded Firmware
}  Checking for specification violation

}  Cloud/VM Platform Implementations
}  Firmware (Bootloader) Implementations

Applying Symbolic Execution
}  Detection of Well Defined Vulnerabilities

}  Manually define rules to check
}  E.g. memory access out of bound, double free on the same path

}  Detection of Flaws in VMs and Embedded Firmware
}  Checking for specification violation

}  Cloud/VM Platform Implementations
}  Firmware (Bootloader) Implementations

}  Challenges to Automation
}  What property (predicates/invariants) to check?
}  How to handle incomplete programs?

Cloud and Virtual Machines

Examples of Virtual Hardware Devices

Recent VM Vulnerabilities

Image & Text Source: http://www.theregister.co.uk/

March, 2015

Oct, 2014

Assumptions on Virtual Machine

}  Software (drivers and OS) makes assumptions about
hardware behavior.

}  Virtual hardware does not behave exactly like

Physical hardware.

}  Such inconsistencies could lead to unexpected
software failures, and some flaws could be fatal and
exploitable by attackers.

Address the Challenge of “What to Check”
}  The Idea:

 Check virtual HW device against its physical peer
 è Behavior Comparison (“Model Checking”)

}  Actions:
1.  Find the physical device (which the virtual device is based on)

2.  Capture behavior of device under physical HW and virtual
device, and compare them.

Address the Challenge of “What to Check”
}  Detect virtual hardware behaviors that diverge from

specification

}  Focus on behaviors visible to Software
}  Do the hardware registers and memory contain the correct

values during operation?

What can be observed
}  The behavior of a HW device is defined by its registers

and how registers respond to I/O events.
}  Full visibility at design time
}  But limited visibility on physical device (after manufacture)

}  Observed by Capturing Traces (of events and dev states)

Event: mmio_write(reg, value)
Device State: [R1,R2, …, RN]
Event: mmio_read(reg)
Device State: [R1,R2, …, RN]
… …
Event: mmio_write(reg, value)
Device States: [R1,R2, …, RN]
… …

Trace:

Example of Capturing HW Behavior

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

Spec: Reg-A is a mask register for Reg-B. !
An update to A causes B to change to VB&~VA!

HW before I/O event

Example of Capturing HW Behavior

mmio_write
(A, 0xFFFF0000)

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

Spec: Reg-A is a mask register for Reg-B. !
An update to A causes B to change to VB&~VA!

HW before I/O event

Reg-A

Reg-B

0xFFFF0000
0x0000FFFF

HW after I/O event

Example of Capturing HW Behavior

mmio_write
(A, 0xFFFF0000)

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

Spec: Reg-A is a mask register for Reg-B. !
An update to A causes B to change to VB&~VA!

HW before I/O event

Reg-A

Reg-B

0xFFFF0000
0x0000FFFF

HW after I/O event
Reproduce the above operation

using the virtual device

Example of Capturing HW Behavior

mmio_write
(A, 0xFFFF0000)

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

Spec: Reg-A is a mask register for Reg-B. !
An update to A causes B to change to VB&~VA!

HW before I/O event

Reg-A

Reg-B

0xFFFF0000
0x0000FFFF

HW after I/O event
Reproduce the above operation

using the virtual device

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

vDevice before I/O event

Reg-A

Reg-B

0xFFFF0000
0xFFFFFFFF

vDevice after I/O event

mmio_write
(A, 0xFFFF0000)

Example of Capturing HW Behavior

mmio_write
(A, 0xFFFF0000)

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

Spec: Reg-A is a mask register for Reg-B. !
An update to A causes B to change to VB&~VA!

HW before I/O event

Reg-A

Reg-B

0xFFFF0000
0x0000FFFF

HW after I/O event
Reproduce the above operation

using the virtual device

Reg-A

Reg-B

0x00000000
0xFFFFFFFF

vDevice before I/O event

Reg-A

Reg-B

0xFFFF0000
0xFFFFFFFF

vDevice after I/O event

mmio_write
(A, 0xFFFF0000)

Inconsistency
Found!

HW Behavior Capturing (In Reality)

}  Dump and replay only works in simple cases

}  Not all physical registers are observable (readable)

}  Some events are difficult or “expensive” to observe

}  Some registers are accessible, but have side effects

Symbolic Behavior Testing

}  How to handle partially observable states?

}  Our approach to deal with unobservable registers

}  Construct the virtual device state by setting
}  observable register values based on the trace
}  missing registers with symbolic values

Symbolic Register Values

}  Example:
}  For a simple device with only 2 registers:

}  RA (observable) and RX (unobservable)

}  The device state in a trace looks like this: [RA== 0xFFFF0000]

RA

RX

0xFFFF0000
unobservable

Captured State

RA

RX

0xFFFF0000

alpha

Virtual Device State

Setting Virtual Device
State based on Trace

How to Run with Symbolic Values?

}  Consider the following
virtual device program:

 …
mmio_write_update_RA (value)
{

 if (RX == 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

}

Virtual Device Code Snippet

How to Run with Symbolic Values?

}  Consider the following
virtual device program:

 …
mmio_write_update_RA (value)
{

 if (RX == 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

}

Virtual Device Code Snippet

RA

RX

0xFFFF0000

alpha

Virtual Device State

Event I:
write (RA,
0xC0FFEE)

+

Suppose we have the above
initial state and a given event
…

How to Run with Symbolic Values?

}  Consider the following
virtual device program:

 …
mmio_write_update_RA (value)
{

 if (RX == 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

}

Virtual Device Code Snippet

RA

RX

0xFFFF0000

alpha

Virtual Device State

Event I:
write (RA,
0xC0FFEE)

+

What will the virtual device
state be after Event I?

Symbolic Execution

}  Consider the following
virtual device program:

 …
mmio_write_update_RA (value)
{

 if (RX == 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

}

Virtual Device Code Snippet

RA

RX

0xFFFF0000

alpha

Virtual Device State

Event I:
write (RA,
0xC0FFEE)

+

RA

RX

0x00C0FFEE

alpha==0

Virtual Device State

If (alpha == 0)
Transaction #1

Symbolic Execution

}  Consider the following
virtual device program:

 …
mmio_write_update_RA (value)
{

 if (RX == 0)
 RA = value;
 else
 RA = value & 0x0000FFFF;

}

Virtual Device Code Snippet

RA

RX

0xFFFF0000

alpha

Virtual Device State

Event I:
write (RA,
0xC0FFEE)

+

RA

RX

0x00C0FFEE

alpha==0

Virtual Device State

RA

RX

0x0000FFEE

alpha!=0

Virtual Device State

If (alpha == 0)
Transaction #1

If (alpha != 0)
Transaction #2

Searching for Inconsistencies

Given this Captured Trace:

RA

RX

0xFFFF0000

alpha

Virtual Device State

Event I:
write (RA,
0xC0FFEE)

+

RA

RX

0x00C0FFEE

alpha==0

Virtual Device State

RA

RX

0x0000FFEE

alpha!=0

Virtual Device State

If (alpha == 0)
Transaction #1

If (alpha != 0)
Transaction #2

…
Device State: [RA== 0xFFFF0000]

Event 1: mmio_write (RA, 0xC0FFEE)
Device State: [RA== 0xFFEE]

…

}  Does one of the output
virtual device states
match the captured
device state?

Searching for Inconsistencies

Given this Captured Trace:

RA

RX

0xFFFF0000

alpha

Virtual Device State

Event I:
write (RA,
0xC0FFEE)

+

RA

RX

0x00C0FFEE

alpha==0

Virtual Device State

RA

RX

0x0000FFEE

alpha!=0

Virtual Device State

If (alpha == 0)
Transaction #1

If (alpha != 0)
Transaction #2

…
Device State: [RA== 0xFFFF0000]

Event 1: mmio_write (RA, 0xC0FFEE)
Device State: [RA== 0xFFEE]

…

}  Found a match, continue
with the Transaction.

}  If multiple matches found,
follow each one.

Searching for Inconsistencies (cont.)

Given this Captured Trace:

RA

RX

0x0000FFEE

alpha!=0

Virtual Device State

Event II:
write (RA, 0x00BEEF00) +

}  Checking a trace with consecutive events

…
Device State: [RA== 0xFFFF0000]

Event 1: mmio_write (RA, 0xC0FFEE)
Device State: [RA== 0xFFEE]

Event II: mmio_write (RA, 0x00BEEF00)
Device State: [RA== 0xBEEF00]
…

Follow from previous transaction

Searching for Inconsistencies (cont.)

Given this Captured Trace:

RA

RX

0x0000FFEE

alpha!=0

Virtual Device State

Event II:
write (RA, 0x00BEEF00) +

RA

RX

0x0000EF00

alpha!=0

Virtual Device State

}  Checking a trace with consecutive events

}  No candidate match è Inconsistency
Found!

…
Device State: [RA== 0xFFFF0000]

Event 1: mmio_write (RA, 0xC0FFEE)
Device State: [RA== 0xFFEE]

Event II: mmio_write (RA, 0x00BEEF00)
Device State: [RA== 0xBEEF00]
…

Follow from previous transaction

Detect Misbehaving Transactions

?	

Possible Symbolic Execution Path
(Transactions) from Virtual Hardware

RI[0],
RN[0]

RI[1,2],
RN[1,2]

RI[1,1],
RN[1,1]

RI[2,2],
RN[2,2]

RI[2,1],
RN[2,1]

I/O
Evt [1]

I/O Evt [2] I/O Evt [2]

I/O
Evt [1]

I/O Evt [2]

Traces of Device
State Changes

Physical
Machine

Guest OS
Software
(Drivers)

Virtual Device

Event & State
Capture

I/O
Evt [1]

RI[0],
RN[0]

RI[1],
RN[1]

RI[2],
RN[2]

I/O
Evt [2]

A Test Case

Results
}  Evaluation

}  Use devices with well-tested virtual machines
}  QEMU/KVM virtual hardware devices

}  Focus on Network Interface Cards (NICs)
}  Intel EEPRO 100, E1000, X540
}  Broadcom BCM5751

}  How to tell virtual vs. physical HW errors?

}  Specification
}  Hardware Errata

Example of Virtual HW Error (e1000)
}  Test Event Sequence

}  MMIO writes to set the NIC MTU limit and receive queue tail,
}  Send a jumbo Ethernet frame to the NIC

}  Inconsistent values
}  RLEC @ 0x04040 – Receive Length Error Count
}  PRC @ 0x0405C – Packets Received ([64-1522] Bytes) Count
}  BPRC @ 0x04078 – Broadcast Packets Received Count
}  MPRC @ 0x0407C – Multicast Packets Received Count
}  GPRC @ 0x04074 – Good Packet Received Count

}  Inconsistencies resulted from a virtual hardware bug

}  Reported to Redhat (QEMU) and con!rmed as a severe bug.

Summary
}  Security of Virtual Machines and Cloud Platforms

}  Verify Virtual Machine Implementation
}  Compare virtual and physical hardware.

}  Verify Hardware Behavior after Manufacture
}  Dynamic Behavior Comparison

} Auto SW Vulnerability Scan and Flaw Finding
}  Critical Errors are not limited to traditional SW security bugs

}  Logical errors
}  Need more “Model” checking

http://oddnews.cosmobc.com/2010/05/18/skynet/	

Thanks for your time!	

